Файл: Модуль 2, патфиз Стомат Этиология повреждений клетки.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.11.2023
Просмотров: 117
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Перед остановкой кровообращения в сосудах воспаленной ткани могут возникать своеобразные, синхронные с ритмом сердечных сокращений изменения направления токов крови. Они называются маятникообразными движениями
крови: в момент систолы кровь движется в капиллярах воспаленной ткани в обычном направлении — от артерий к венам, а в момент диастолы направление крови становится обратным — от вен к артериям. Механизм маятникообразных движений крови в воспаленной ткани состоит в том, что во время систолы пульсовая волна проскакивает через расширенные артериолы и создает картину, известную под названием капиллярного пульса. В момент диастолы кровь встречает препятствия к оттоку по венозной системе и отливает обратно вследствие падения кровяного давления в капиллярах и артериолах во время диастолы.
От маятникообразных движений крови в воспаленной ткани следует отличать передвижения крови из одной сосудистой территории в другую под влиянием прорыва тромбов, открытия или закрытия просвета капилляров вследствие их сдавления, регионарного расширения, закупорки агломерированными форменными элементами и других факторов перераспределения крови внутри сосудисто-капиллярной сети воспаленной ткани. Эти перемещения масс крови из одной сосудистой территории в другую в очаге воспаления чаще возникают в стадии застоя крови и наблюдаются в виде потоков крови по капиллярам, не синхронных с сердечными сокращениями, как при маятникообразных движениях.
Повреждение капилляров и венул в начале воспалительного процесса вызывает раннюю реакцию тромбоцитов крови, которые прилипают и скапливаются в местах повреждения. Этот процесс, с одной стороны, является защитным, так как
«заклеивает» дефектную структуру эндотелиальной стенки, с другой стороны, он является вредным, так как организует в дальнейшем развитие прилипания и выхождение лейкоцитов в воспаленную ткань, т. е. организует воспаление как вредную для организма патологическую реакцию. Этот диалектически противоположный процесс «защитного» и патологического продолжается далее во всех стадиях развития воспаления. В настоящее время получены данные о том, что при повреждении эндотелия капилляров и вен освобождается вещество
(медиатор), которое увеличивает «клейкость» внутренней поверхности эндотелия по отношению к тромбоцитам и лейкоцитам. Этот процесс способствует возникновению «краевого стояния» лейкоцитов при воспалении. Природа этого медиатора пока не определена. Возможно, что оно относится к кининам
(пептидам).
14. Механизм воспалительного отека
В результате усиленного выхода жидкой части крови из сосуда в ткань - экссудации развивается воспалительный отек. Его развитие зависит от ряда причин, в том числе от: а) повышения проницаемости микрососудов;
б) увеличения кровяного (фильтрационного) давления в посткапиллярных венулах; в) повышения осмотического давления в околососудистых тканях.
Главная причина воспалительного отека - повышение проницаемости микрососудов. В связи с этим в отечной жидкости при воспалении скапливается намного больше белка и других макромолекул. Проницаемость сосудов для жидкой части крови и ее клеточных элементов прежде всего зависит от свойств эндотелия капилляров. Большинство капилляров имеет непрерывный тип строения. Это - капилляры скелетных мышц, сердца, легких.
Эндотелий капилляров других органов имеет фенестры (оконца), затянутые тонкой диафрагмой. Такие фенестры обнаружены в микрососудах эндокринных желез, ворсинок тонкого кишечника, языка, и пр. Наконец, существуют капилляры в виде синусоидов в печени, селезенке. Они имеют широкие межэндотелиальные щели и множество фенестр, размеры которых могут быстро меняться в зависимости от давления в сосуде. При росте давления отверстия сливаются друг с другом, и жидкость начинает быстрее фильтроваться из сосуда в ткань.
Вещества плазмы могут проникать через стенку микрососудов разными путями:
- Вода, электролиты, глюкоза и другие простые соединения с малой массой проникают путем диффузии.
- Белки и другие макромолекулы проходят более сложным путем. Он получил название микровезикулярного транспорта и заключается в том, что от наружной мембраны вначале отпочковывается пузырек диаметром 45-70 нм. В таких везикулах или пузырьках, или микропиноцитозных вакуолях содержатся плазменные белки. Пузырек погружается в цитоплазму эндотелиоцита и проходит от одного полюса клетки к другому, разгружаясь у базальной мембраны. Таким образом, эндотелиальные клетки могут активно захватывать в акте пиноцитоза нужные им макромолекулы из плазмы крови и передавать их в околососудистые ткани. Это явление называется цитопемсисом (от греч. pemsis - проведение).
- Наконец вещества плазмы могут проникать в ткань через щели между эндотелиоцитами или фенестры. Размеры щелей зависят от того, в каком состоянии находятся клетки эндотелия. Если они сокращаются, то щели обнажаются и, наоборот, расслабление эндотелиоцитов ведет к перекрытию щелей. Это было четко продемонстрировано в опытах, где эндотелий культивировали in vitro: под действием лейкотриенов С4 и Д4,
-
О
2
,
Главная причина воспалительного отека - повышение проницаемости микрососудов. В связи с этим в отечной жидкости при воспалении скапливается намного больше белка и других макромолекул. Проницаемость сосудов для жидкой части крови и ее клеточных элементов прежде всего зависит от свойств эндотелия капилляров. Большинство капилляров имеет непрерывный тип строения. Это - капилляры скелетных мышц, сердца, легких.
Эндотелий капилляров других органов имеет фенестры (оконца), затянутые тонкой диафрагмой. Такие фенестры обнаружены в микрососудах эндокринных желез, ворсинок тонкого кишечника, языка, и пр. Наконец, существуют капилляры в виде синусоидов в печени, селезенке. Они имеют широкие межэндотелиальные щели и множество фенестр, размеры которых могут быстро меняться в зависимости от давления в сосуде. При росте давления отверстия сливаются друг с другом, и жидкость начинает быстрее фильтроваться из сосуда в ткань.
Вещества плазмы могут проникать через стенку микрососудов разными путями:
- Вода, электролиты, глюкоза и другие простые соединения с малой массой проникают путем диффузии.
- Белки и другие макромолекулы проходят более сложным путем. Он получил название микровезикулярного транспорта и заключается в том, что от наружной мембраны вначале отпочковывается пузырек диаметром 45-70 нм. В таких везикулах или пузырьках, или микропиноцитозных вакуолях содержатся плазменные белки. Пузырек погружается в цитоплазму эндотелиоцита и проходит от одного полюса клетки к другому, разгружаясь у базальной мембраны. Таким образом, эндотелиальные клетки могут активно захватывать в акте пиноцитоза нужные им макромолекулы из плазмы крови и передавать их в околососудистые ткани. Это явление называется цитопемсисом (от греч. pemsis - проведение).
- Наконец вещества плазмы могут проникать в ткань через щели между эндотелиоцитами или фенестры. Размеры щелей зависят от того, в каком состоянии находятся клетки эндотелия. Если они сокращаются, то щели обнажаются и, наоборот, расслабление эндотелиоцитов ведет к перекрытию щелей. Это было четко продемонстрировано в опытах, где эндотелий культивировали in vitro: под действием лейкотриенов С4 и Д4,
-
О
2
,
брадикинина, гистамина, добавленных в инкубационную среду, эндотелий капилляров и посткапиллярных венул быстро округлялся и между клетками открывались щели.
Фильтрация и транспорт компонентов плазмы протекает через эндотелий капилляров. Благодаря этим процессам обеспечивается нормальный обмен веществ между кровью и тканями. В то же время в ходе воспаления жидкая часть крови начинает намного быстрее и в большем объеме покидать сосуды и устремляться в зону повреждения. Воспалительный отек имеет определенное защитное значение. Белки отечной жидкости связывают токсины, задерживают их всасывание в кровь и распространение по всему организму.
Рассасывание отечной жидкости зависит от дренирующей функции лимфатической системы. При воспалении она, как правило, страдает в большей или меньшей степени из-за закупорки лимфатических капилляров фибриновыми сгустками или их сдавления снаружи отечной жидкостью
(экссудатом).
15. Виды экссудатов и транссудатов, их характеристика, биологическое
значение.
Биологический смысл экссудации как компонента В. состоит в отграничении очага
В. через сдавление кровеностных и лимфатических микрососудов вследствие интерстиналльного отека, а также в разведении флогогенов и факторов цитолиза в очаге В. для предотвращения избыточной вторичной альтерации.
Фильтрация и транспорт компонентов плазмы протекает через эндотелий капилляров. Благодаря этим процессам обеспечивается нормальный обмен веществ между кровью и тканями. В то же время в ходе воспаления жидкая часть крови начинает намного быстрее и в большем объеме покидать сосуды и устремляться в зону повреждения. Воспалительный отек имеет определенное защитное значение. Белки отечной жидкости связывают токсины, задерживают их всасывание в кровь и распространение по всему организму.
Рассасывание отечной жидкости зависит от дренирующей функции лимфатической системы. При воспалении она, как правило, страдает в большей или меньшей степени из-за закупорки лимфатических капилляров фибриновыми сгустками или их сдавления снаружи отечной жидкостью
(экссудатом).
15. Виды экссудатов и транссудатов, их характеристика, биологическое
значение.
Биологический смысл экссудации как компонента В. состоит в отграничении очага
В. через сдавление кровеностных и лимфатических микрососудов вследствие интерстиналльного отека, а также в разведении флогогенов и факторов цитолиза в очаге В. для предотвращения избыточной вторичной альтерации.
1 2 3 4 5 6 7
Виды экссудатов: серозный, гнойный, геморрагический, фиброзный, смешанный экссудат
Транссудат — отечная жидкость, скапливающаяся в полостях тела и тканевых щелях. Транссудат обычно бесцветен или бледно-желтого цвета, прозрачный, реже мутноват из-за примеси единичных клеток спущенного эпителия, лимфоцитов, жира. Содержание белков в транссудате обычно не превышает 3%; ими являются сывороточные альбумины и глобулины. В отличие от экссудата в транссудате отсутствуют ферменты, свойственные плазме. Иногда качественные различия между транссудатом и экссудатом исчезают: транссудат становится мутноватым, количество белка в нем возрастает до 4—5%. В таких случаях важное значение для дифференциации жидкостей имеет изучение всего комплекса клинических, анатомических и бактериологических изменений
(наличие у больного боли, повышенной температуры тела, воспалительной гиперемии , кровоизлияний, обнаружение в жидкости микроорганизмов). Для отличия транссудата от экссудата применяют пробу Ривальты, основанную на разном содержании в них белка.
16.
Эмиграция лейкоцитов при воспалении. Стадии, механизм.
Эмиграция лейкоцитов (лейкодиапедез) – выход лейкоцитов из просвета сосудов ч/з сосудистую стенку в окружающую ткань. Этот процесс совершается и в норме, но при В. приобретает гораздо большие масштабы. Смысл эмиграции состоит в том, чтобы в очаге В. скопилось достаточное число клеток, играющих роль в развитии В. (фагоцитоз и т. д. ).
В настоящее время механизм эмиграции изучен довольно хорошо. Эмиграция лейкоцитов в очаг В. начинается с их краевого (пристеночного) стояния
(маргинация лейкоцитов), которое может продолжаться несколько десятков мин.
Затем гранулоциты (через межэндотелиального щели) и агранулоциты (путем цитопемзисм – трансэндотелиального переноса) проходят через сосудистую стенку и продвагиются к объекту фагоцитирования. Лейкоциты выходят за пределы сосуда на стыке между эндотелиальными клетками. Это объясняется округлением эндотелиоцитов и увеличением интервалов между ними. После выхода лейкоцитов контакты восстанавливаются. Амебиодное движение лейкоцитов возможно благодаря обратимым изменениям состояния их цитоплазмы и поверхностного натяжения мембран, обратимой “полимеризации” сократительных белков – актина и миозина и использованию энергии АТФ анаэробного гликолиза. Направленное движение лейоцитов объясняется накоплением в очаге воспаления экзо- и эндогенных хемоаттрактантов – веществ индуцирующих хемотаксис, повышением температуры (термотаксис), а также развитием условий для гальвано- и гидромаксиса.
Функцию эндогенных хемоаттрактантов выполняют фракции системы комплемента, в особенности компонент С
5а
. Свойствами хемоаттрактантов обладают кинины и активированный фактор – Хагемана. Экзогенными хемоаттрактантами являются пептиды бактериального происхождения, в особенности те, которые содержат N-фармиловые группы.
В эмиграции лейкоцитов в очаг В. наблюдается определенная очередность: сначала эмигрируют нейтрофильные гранулоциты, моноциты, лимфоциты. Более позднее проникновение моноцитов объясняется их меньшей хемотаксической чувствительностью. После завершения воспалительного процесса в очаге наблюдается постепенное исчезновение клеток крови, начиная с тех лейкоцитов, которые появились раньше (нейтрофильные гранулоциты). Позже элиминируются лимфоциты и моноциты.
Клеточный состав экссудата в значительной степени зависит от этиологического фактора В. Так, если В. вызвано гноеродными микробами (стафилококки, стрептококки), то в вышедшей жидкости преобладают нейтрофильные гранулоциты, если оно протекает на иммунной основе (аллергия) или вызвано паразитами (гельминты), то наблюдается множество эозинофильных гранулоцитов. При хроническом воспалении (туберкулез, сифилис) в экссудате содержится большое число мононулеаров (лимфоциты, моноциты).
В очаге В. осуществляется активное движение лейкоцитов к химическим раздражителям – хемоаттрактантам в соответствии с градиентами их концентрации. Ориентированное движение клеток и организмов под влияеми химических раздражителей – хемоаттрактантов получило название – хемотаксис.
В хемотаксисе лейкоцитов большое значение имеет система комплемента и прежде всего компоненты С
3
и С
5
. Лейкотаксически активные компоненты системы комплемента С
3
и С
5
образуются в очаге В. под влиянием различных ферментов: трипсина, тромбина, плазмы, уровень которых в условиях альтерации возрастает.
После взаимодействия хемоаттрактантов со своими рецепторами на поверхности нейтрофилов и активированных моноцитов, хаотическое движение фагоцитов прекращается. Фагоциты начинают ориентировано перемещаться по направлению к объекту эндоцитоза в соответствии с градиентами концентрации хемоаттрактантов, то есть становятся ориентированными. Процесс эмиграции может не только стимулироваться, но и подавляться. Рост содержания в очаге В. кортизола тормозит ориентированный хемотаксис нейтрофилов.
Гиперкортизолемия, тормозящая миграцию ориентированных полиморфонуклеаров, направлена на предотвращение трансформации В. из защитной в патологическую реакцию.
17. Фагоцитоз при воспалении. Стадии, механизм
Если микроб, преодолевая защитные барьеры кожи и слизистых оболочек, проникает в глубину тканей, на месте его внедрения почти всегда развивается воспалительный процесс. Это одна из наиболее характерных и чрезвычайно сложных реакций организма, возникающих под влиянием различных раздражителей.
Защитная функция воспаления была установлена многими исследователями, начиная с классических работ И. И. Мечникова. Одновременно воспаление имеет и патогенетическое значение, вызывая структурные и функциональные изменения.
Воспаление представляет собой защитно-приспособительную реакцию, в которой основным механизмом, обусловливающим освобождение организма от микробов и других вредоносных факторов, является фагоцитоз (от греч. Phago – ем, Cytes – клетка).
Фагоцитоз – процесс активного поглощения клетками организма попадающих в него патогенных живых или убитых микробов и различных инородных частиц с последующим их перевариванием при помощи внутриклеточных ферментов.
Воспаление и фагоцитоз обеспечивают фиксацию и уничтожение возбудителей инфекции (антигена) на месте их проникновения (введения) в организм.
Фагоцитарной активностью обладают различные клетки, но наибольшей – клетки лимфоидно-макрофагальной системы (микро - и макрофаги). Судьба фагоцитируемых микробов различна. Процесс, при котором наступает лизис и гибель бактерий в фагоците, называется завершенным фагоцитозом. Но при фагоцитозе могут погибать не все микробы, некоторые из них сохраняют жизнеспособность. Такой процесс называют незавершенным фагоцитозом
(например, при пастереллезе, туберкулезе, бруцеллезе). При этом количество микробов в фагоците может увеличиваться и привести его к гибели.
Вирусы тоже захватываются фагоцитами путем пиноцитоза.
На активность фагоцитоза влияют многие факторы. Его активизируют антитела, соли кальция, холестерин и вещества, усиливающие окисление и расщепление жиров, а также гистамин, освобождающийся при воспалительных процессах.
Фагоцитоз угнетается при авитаминозах и повышенном содержании ацетилхолина и кортикостероидов. Кроме того, доказано приобретение макрофагами специфической иммунологической компетентности (соответствия), в результате чего они эффективнее фагоцитируют при повторной встрече того же возбудителя.
Проявление подобного специфического свойства макрофагами носит название фагоцитарного иммунитета. Следует все же иметь в" виду, что степень этой защиты при заболеваниях, вызываемых различными микроорганизмами, неодинаковая. В одних случаях фагоцитоз является одним из основных факторов иммунитета (например, при большинстве бактериальных инфекций), в других же
(вирусные болезни) – имеет второстепенное значение. Воспаление и фагоцитоз на месте введения растворимого антигена выражены слабее, чем при введении корпускулярного (бактериального) антигена.
18.
Основные группы медиаторов воспаления. Классификация.
Медиаторы /посредники/ воспаления - это комплекс физиологически активных веществ, опосредующих действие факторов, вызывающих воспаление и определяющих развитие и исходы воспаления. При воспалении они выделяются в больших количествах и становятся медиаторами. Т.к. они способны усиливать или ослаблять проявление воспалительного процесса их называют модуляторами.
Медиаторное звено является важным в патогенезе воспаления. Основными группами медиаторов воспаления являются: 1. Биогенные амины - гистамин, серотонин. Гистамин - один из наиболее важных медиаторов, выделяется базофилами и тучными клетками и реализует свое действие через мембранные рецепторы. Высвобождение гистамина одна из первых реакций ткани на