Файл: Лекция 1 Тема лекции Введение в коллоидную химию.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 22.11.2023

Просмотров: 129

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Рис.3. Механизм пептизации

Различают адсорбционную, химическую пептизации, промывание осадка растворителем. В случае адсорбционной пептизации осадок обрабатывают электролитом, содержащим ионы, способные к избирательной адсорбции на поверхности осадка (например, при обработке осадка Fe(OH)3 раствором FeCl3). В случае химической пептизации осадок вступает в химическое взаимодействие с небольшим количеством электролита (кислотой или щелочью), в результате которого образуется стабилизирующий электролит. Например, при частичной обработке осадка гидроксида железа (III) раствором соляной кислоты, протекает реакция Fe(OH)3 + HCl = FeOCl + 2H2O и образуется электролит, который диссоциирует на ионы: FeOCl FeO+ + Cl.

На поверхности осадка Fe(OH)3, в соответствии с правилом Панета-Фаянса (в результате химичес-кого сродства), адсорбируются ионы FeO+ и при-дают ей положительный заряд. В результате элек-тростатического отталкивания одноименно заря-женных частей поверхности, наблюдается посте-пенное увеличение трещин (см. рис.4), что приво-дит к распаду агрегата осадка на более мелкие час-тицы. Процесс протекает до распада частиц на частицы коллоидных размеров.



Рис.4 Схема расклинивающего действия адсорбированного слоя ионов пептизатора

Промывание осадка растворителем осуществляют тогда, когда коллоидная система получена в присутствии значительного избытка одного из реагентов. Устойчивость системы достигается за счёт удаления некоторого избыточного количества электролита.

Конденсационные методы получения коллоидных систем

Образование коллоидных систем в результате конденсации рассматривают как процесс кристаллизации, а коллоидные частицы – как мельчайшие кристаллики. Образование кристалликов протекает в несколько стадий:

 возникновение зародышей (центров кристаллизации) по всему объему раствора. Центры кристаллизации могут возникнуть только в пересыщенных растворах;


 рост зародышей до крупных кристаллов. Причем, скорость образования зародышей должна быть больше скорости роста кристаллов, так как при этом образуется множество кристалликов с размерами коллоидных частиц. Этого можно добиться, если использовать сильноразбавленные растворы. Если скорость роста кристаллов будет больше скорости образования центров кристаллизации, то образуются крупные кристаллы и выпадение их в осадок;

 стабилизация частиц ДФ. Происходит за счёт образования ионов или их введения.

Конденсационные методы делятся на химические и физические.

Физические методы конденсирования связаны с изменением химической при-роды среды (замены растворителя) или условий (температуры, давления) существования раствора и созданием таких условий, при которых один из компонентов системы становится нерастворимым в другом.

Физическая конденсация осуществляется двумя способами: заменой растворителя и конденсацией паров.

Метод замены растворителя основан на выделении растворенного вещества из раствора в виде высокодисперсной нерастворимой фазы в результате замены летучего растворителя. При замене дисперсионной среды, из-за плохой растворимости в новой дисперсионной среде, частицы начинают конденсироваться в более крупные частицы. Например, при постепенном добавлении воды к спиртовому раствору канифоли, молекулы канифоли оказываются в чужеродном окружении молекул воды и они вытесняются из их окружения (молекулы воды сильнее притягиваются между собой, чем с молекулами канифоли) и объединяются в более крупные частицы. И таким образом образуются устойчивые коллоидные системы, например, гидрозоли серы, фосфора, канифоли, некоторых лекарств (карвалола, валерьяны и др).

Метод конденсации паров осуществляется при охлаждении системы. В природе по этому методу образуются туманы, облака, а в промышленности – органозоли. В лабораторных условиях для получения золей для медицины и биологии исполь-зуется метод Рогинского-Шальникова, основанный на одновременной конденса-ции паров диспергируемого вещества и растворителя на холодной поверхности.

Химическая конденсация

При химической конденсации должны соблюдаться следующие условия:

 ничтожно малая растворимость вещества, образующего ДФ, что достигается пересыщением раствора

;

 достижение такой степени дисперсности, которая обеспечила бы системе устойчивость;

 стабилизация частиц, что достигается избыточным количеством одного из реагентов химической реакции.

Химическая конденсация осуществляется путём пересыщения раствора трудно растворимым веществом, образующимся в ходе различных химических реакций. Чаще всего используются реакции окисления, восстановления, ионного обмена, гидролиза и др. Впервые этот метод был применен М.Фарадеем для получения коллоидного золота (1857 г.).

Реакцией восстановления пользуются главным образом для получения золей золота, серебра и др. металлов, оксидов некоторых элементов (например, MnO2). Для этого к разбавленным растворам соли металла добавляют восстановитель: образовавшиеся в результате восстановления атомы металла соединяются в коллоидные частицы. Например: Au3+ + Fe2+ = Auo + Fe3+.

В фармацевтической промышленности некоторые препараты получают восста-новлением металлов в присутствии защитных веществ, например препараты кол-лоидного серебра, защищенного солями лизальбиновой и протальбиновой кислот (колларгол) или коллоидной окиси серебра, защищенной альбумином (протаргол).

Реакцией окисления получают золи серы и селена: 2H2S + O2 = 2S + 2H2O или 2H2S + SO2 = 3S + 2H2O

Реакция гидролиза используется для получения гидрозолей оснований и кислот, гидроксидов металлов, например:

FeCl3 + 3H2O = Fe(OH)3  + 3HCl

Na2SiO3 + H2O = H2SiO3  + NaOH

SiCl4 + 2H2O = SiO2 + 4HCl

Реакцией ионного обмена получают гидрозоли нерастворимых в воде сульфидов, галогенидов и др. солей, например:

As2O3 + 3H2S = As2S3  + 3H2O

AgNO3 + NaCl = AgCl + NaNO3

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]  + 3KCl


Методы очистки коллоидных систем

Часто в полученных дисперсных системах, кроме мицелл, стабилизатора и растворителя содержатся низкомолекулярные вещества (примеси). Они снижают устойчивость ДС (могут нейтрализовать заряд коллоидных частиц, что ведет к коагуляции и разрушению коллоидных систем). Для очистки коллоидных систем от низкомолекулярных примесей используют диализ, электродиализ и ультрафильтрацию.

Диализ (предложен и назван Т.Грэмом) основан на пропускании коллоидного раствора через полупроницаемую мембрану. Простейший диализатор (рис.5) представляет собой мешочек из полупроницаемого материала, в который заливается коллоидный раствор, а мешочек опускается в сосуд с водой (растворителем). За счет малых размеров отверстий полупроницаемые мембраны задерживают коллоидные частицы, а низкомолекулярные проходят через мембрану в растворитель. В результате происходит удаление низкомолекулярных веществ из коллоидного раствора. Раньше в качестве полупроницаемой мембраны использовали стенки мочевого или желчного пузыря, кишечник, пергамент. В настоящее время – мембраны из коллодия (раствора нитрата целлюлозы) – целлофан. Они очень удобны, т.к. можно изготовить мембраны с любым размером отверстий.



Рис. 5. Диализаторы Т.Грэма.

Следует отметить, что длительный диализ, кроме удаления примесей из рас-твора может привести к коагуляции системы в результате удаления стабилизатора.

Электродиализ. Поскольку низкомолекулярные примеси в золях являются элек-тролитами, диализ можно ускорить путём наложения электрического тока. Для этого коллоидный раствор помещают между двумя мембранами, снаружи которых

находятся растворитель, в которые опущены электроды. При пропускании электрического то-ка ионы притягиваются к электродам и диффун-дируют через мембрану. При этом скорость диффузии ионов будет больше чем при обычном диализе. Поэтому электродиализ быстрее, чем диализ. Он эффективен после предварительного диализа (т.к. за счет малого градиента концен-трации ионов между водой и коллоидным раствором, последний не нагревается).



Рис.6. Схема электродиализатора


Диализ применяется в биотехнологии и фармацевтике для очистки белков, ВМС от примесей солей, при получении ценных лекарственных препаратов – глобулина, флокулянтов и др. Диализ используется в клинике как метод лечения («гемодиализ») больных с заболеваниями печени, почек, синдромом длительного давления, при острых отравлениях. При этом кровь больного пропускают через аппарат «искусственная почка». Он представляет собой систему с мембраной, одна сторона которой промывается солевым (физиологическим) раствором, имеющим такой же состав, как и плазма крови, а другая – кровью больного. В ходе гемодиализа низкомолекулярные продукты обмена веществ покидают кровь через мембрану, а белки остаются в крови (из-за большого размера). Необходимые организму соли также сохраняются, т.к. отсутствует градиент их концентрации между кровью и физиологическим раствором.

Ультрафильтрация – это диализ, проводимый под дав-лением или вакуумом. По существу является не методом очистки, а методом концентрирования ДФ, т.е. отделения ДФ от дисперсионной среды. Для этого коллоидный рас-твор пропускают через ультрафильтры – механически прочные и толстые фильтры с очень малыми отверстиями. В качестве ультрафильтров применяют пластины с отверс-тиями из асбеста, фарфора и др. керамических материалов, сверху покрытых целлофаном, фильтровальной бумагой, пропитанной коллоидом. Для ускорения фильтрации отка-чивают воздух из сосуда под фильтром или нагнетают воздух над фильтром.

При ультрафильтрации вместе с низкомолекулярными примесями через фильтры проходят и молекулы раствори-теля (дисперсионной среды). Поэтому, при необходимос-ти, после ультрафильтрации приходится разбавлять кол-лоидный раствор до требуемой (исходной) концентрации.



Рис. 7. Схема

ультрафильтра:

А- коллоидный раствор;

М- мембрана; П – пластина с отверстиями;

У - ультрафильтрат

Ультрафильтрация применяется также, как и диализ и электродиализ, в част-ности для очистки культуральной жидкости от тел бактерий – продуцентов анти-биотиков, отделения белков и стериализации их растворов. При этом бактерии, вирусы остаются на фильтре, а из фильтрата выделяют необходимые лекарственные вещества (сыворотки, вакцины).