Файл: 2. расчетно теоретическая часть 1 Проектирование усилительного модуля.rtf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 23.11.2023
Просмотров: 119
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
(1)
Пусть YSI = GSI +j BSI – полные проводимости нескольких нагрузок ( i =1,2,3,4). Если провести n измерений величин FSI ,GSI ,BSI ( i=1,2,3,…,n, где n 4), то получим систему из n уравнений типа (1).
(2)
Путем замены переменных уравнение (2) удобно привести к линейному. Для этого сначала преобразуем его к виду: (3)
Введем новые параметры ( yi, xi, zi ), связанные с измеренными величинами соотношениями:
, , , (4)
а также новые переменные, связанные с неизвестными переменными
= Rп (G2SO + B2SO), = Rп
= -2Rп BSO , = Fmin-2Rп GSO (5)
Тогда система (3) приводится к системе линейных уравнений
+ yi + zi + xi = Fi ( i 1,2,n) (6)
Выражения для неизвестных имеют вид
Rп = , BSO= -/2,
GSO=(-4-)2/2, Fmin=+(4-)1/2 , (7)
где Rп ,BSO, GSO, Fmin – неизвестные шумовые параметры.
Для решения системы (6) с неизвестными , , , , в принципе, достаточно взять четыре уравнения (n=4).
При этом решение может быть представлено в аналитическом виде:
= (D123A124 – D124A123)/(C123A124 – C124A123),
= - (D123C124 – D124C123 )/(C123A124 – C124A123),
= F2 – F1 - (x2 –x1) - (y2 – y1) / (z2 – z1),
= F1 - x1 - y1 - z1, (8)
A12k = z1 ( yk – y2 ) + z2 ( y1 – yk ) + zk ( y2 – y1),
C12k = z1 ( xk – x 2 ) + z2 ( x1 – xk ) + zk ( x2 – x 1),
D12k = z1 ( Fk – F2 ) + z2 ( F1 – Fk ) + zk ( F2 – F1),
K = 3,4
Отметим, что решение ( 7) существует лишь при условии 4 2 (9), поскольку выражение для GSO и Fmin (7) содержат квадратный корень.
В предлагаемом методе, как, в, прочем, и в ранее известных, используются два вида аппаратуры: значения Fi определяются с помощью измерителя коэффициента шума (рис. 4а), а значения G
SI и BSI – с помощью измерителя полных проводимостей (рис. 4б). При этом на обоих установках требуется провести как минимум четыре измерения, различающиеся значениями параметров Fi, GSI, BSI. Поскольку между генератором сигнала анализа ( шумового или СВЧ ) и исследуемым прибором ( транзистором ) включается трансформатор, то очень важно, чтобы при использовании обоих измерительных установок была осуществлена одинаковая трансформация электромагнитного поля. В таблице 1 приведены значения измеренных на частоте f = 10 ГГц параметров Fi , GSI , BSi для нескольких комбинаций элементов трансформаторов. Расчетные значения четырех шумовых параметров составили : Fmin = 1,093 дБ, Rп = 33,8 Ом, GSO = 0,013 См, BSO = - 0,0183 См.
Результаты измерений коэффициентов шума и входных проводимостей для транзистора "Созвездие" (U = 5 В, U = - 2,6 В, I = 20 мА) на частоте 10 ГГц приведены в таблице 1.
В результате проведения аналогичных измерений частот были получены величины шумовых параметров в интервале частот от 7 до 10 ГГц (рис.5). При проектировании МШУ необходимо решить двуединую задачу: обеспечить минимальное значение коэффициента шума и максимальное значение коэффициента усиления. Традиционно такая задача является разрешимой, потому что решается путем использования двухкаскадной схемы усилителя, один из которых (входной) формирует минимальное значение коэффициента шума, другой (выходной) - максимальное усиление.
Между тем, весьма привлекательным видится решение и такой задачи: оставаясь в рамках двухтранзисторного усилителя, отказаться от каскадного включения транзисторов и в рамках нового схемотехнического решения найти такие оптимальные значения параметров схемы, при которых в широкой полосе достигалось и малое значение коэффициента шума и приемлемая величина коэффициента усиления.
Таблица 1.
20 Вт/мград) наиболее близка к теплопроводности поликора (25 Вт/мград)и по КЛТР эти материалы близки друг к другу. Единственный недостаток ковара его плотность, примерно в 2 раза больше плотности титана и 3 раза больше плотности алюминия.
В последние годы все больше внимания разработчиков привлекает – нитрид алюминия. Его теплопроводность равна 160 Вт/град, что сопоставимо с алюминиевыми сплавами (дюралью). Если в качестве подожки ГИС усилителя выбрать нитрид алюминия, то такую подложку целесообразно размещать в корпусе из сплавов алюминия. Такая конструкция модуля позволяет в 3 раза уменьшить вес модуля.
Таблица 2.
3.5 Соединение микросхем с основанием
Металлическим основанием служили коваровые или титановые пластины толщиной 1 мм (рис.15) с никелевым покрытием. Готовый полностью расплавляемый припой ПОС-61 использовался в виде навесок (шариков) диаметром 2-3 мм, расположенных в отверстиях основания. Глицерин наносили непосредственно на паяемые поверхности. Пайку проводили на воздухе путем нагрева оснастки с собранными деталями на столике нагревателя до 190…2000С.
Вибрацию в процессе пайки осуществляли после расплавления припоя путем сообщения основанию механических колебаний относительно неподвижной поликоровой платы вручную с частотой 1-2 Гц с амплитудой перемещения 0,05…0,2 мм. Время притирки пластины к подложке не превышало 2 минут. После окончания вибрации (притирки) на соединяемые детали накладывали давление = 0,02…0,03 кг/см
Пусть YSI = GSI +j BSI – полные проводимости нескольких нагрузок ( i =1,2,3,4). Если провести n измерений величин FSI ,GSI ,BSI ( i=1,2,3,…,n, где n 4), то получим систему из n уравнений типа (1).
(2)
Путем замены переменных уравнение (2) удобно привести к линейному. Для этого сначала преобразуем его к виду: (3)
Введем новые параметры ( yi, xi, zi ), связанные с измеренными величинами соотношениями:
, , , (4)
а также новые переменные, связанные с неизвестными переменными
= Rп (G2SO + B2SO), = Rп
= -2Rп BSO , = Fmin-2Rп GSO (5)
Тогда система (3) приводится к системе линейных уравнений
+ yi + zi + xi = Fi ( i 1,2,n) (6)
Выражения для неизвестных имеют вид
Rп = , BSO= -/2,
GSO=(-4-)2/2, Fmin=+(4-)1/2 , (7)
где Rп ,BSO, GSO, Fmin – неизвестные шумовые параметры.
Для решения системы (6) с неизвестными , , , , в принципе, достаточно взять четыре уравнения (n=4).
При этом решение может быть представлено в аналитическом виде:
= (D123A124 – D124A123)/(C123A124 – C124A123),
= - (D123C124 – D124C123 )/(C123A124 – C124A123),
= F2 – F1 - (x2 –x1) - (y2 – y1) / (z2 – z1),
= F1 - x1 - y1 - z1, (8)
A12k = z1 ( yk – y2 ) + z2 ( y1 – yk ) + zk ( y2 – y1),
C12k = z1 ( xk – x 2 ) + z2 ( x1 – xk ) + zk ( x2 – x 1),
D12k = z1 ( Fk – F2 ) + z2 ( F1 – Fk ) + zk ( F2 – F1),
K = 3,4
Отметим, что решение ( 7) существует лишь при условии 4 2 (9), поскольку выражение для GSO и Fmin (7) содержат квадратный корень.
В предлагаемом методе, как, в, прочем, и в ранее известных, используются два вида аппаратуры: значения Fi определяются с помощью измерителя коэффициента шума (рис. 4а), а значения G
SI и BSI – с помощью измерителя полных проводимостей (рис. 4б). При этом на обоих установках требуется провести как минимум четыре измерения, различающиеся значениями параметров Fi, GSI, BSI. Поскольку между генератором сигнала анализа ( шумового или СВЧ ) и исследуемым прибором ( транзистором ) включается трансформатор, то очень важно, чтобы при использовании обоих измерительных установок была осуществлена одинаковая трансформация электромагнитного поля. В таблице 1 приведены значения измеренных на частоте f = 10 ГГц параметров Fi , GSI , BSi для нескольких комбинаций элементов трансформаторов. Расчетные значения четырех шумовых параметров составили : Fmin = 1,093 дБ, Rп = 33,8 Ом, GSO = 0,013 См, BSO = - 0,0183 См.
Результаты измерений коэффициентов шума и входных проводимостей для транзистора "Созвездие" (U = 5 В, U = - 2,6 В, I = 20 мА) на частоте 10 ГГц приведены в таблице 1.
В результате проведения аналогичных измерений частот были получены величины шумовых параметров в интервале частот от 7 до 10 ГГц (рис.5). При проектировании МШУ необходимо решить двуединую задачу: обеспечить минимальное значение коэффициента шума и максимальное значение коэффициента усиления. Традиционно такая задача является разрешимой, потому что решается путем использования двухкаскадной схемы усилителя, один из которых (входной) формирует минимальное значение коэффициента шума, другой (выходной) - максимальное усиление.
Между тем, весьма привлекательным видится решение и такой задачи: оставаясь в рамках двухтранзисторного усилителя, отказаться от каскадного включения транзисторов и в рамках нового схемотехнического решения найти такие оптимальные значения параметров схемы, при которых в широкой полосе достигалось и малое значение коэффициента шума и приемлемая величина коэффициента усиления.
Таблица 1.
i | Fi , дБ | GSI , Cм | BSI , См |
1 | 2,564 | 19,07 | - 2,35 |
2 | 2,479 | 18,9 | - 3,5 |
3 | 2,369 | 18,48 | - 4,97 |
4 | 2,244 | 17,68 | - 6,68 |
5 | 2,072 | 17,06 | - 8,99 |
6 | 1,851 | 14,44 | - 10,18 |
7 | 1,622 | 12,41 | - 11,3 |
8 | 1,401 | 10,5 | - 11,8 |
9 | 3,407 | 11,79 | 4,11 |
10 | 2,678 | 11,21 | 1,76 |
11 | 2,319 | 11,29 | - 1,27 |
12 | 1,993 | 12,16 | - 4,01 |
13 | 1,925 | 14,11 | - 6,85 |
14 | 2,447 | 21,63 | - 10,11 |
15 | 2,888 | 26,73 | - 8,86 |
16 | 3,352 | 31,84 | - 2,46 |
17 | 3,844 | 20,19 | 10,82 |
2.1.5 Проектирование каскада МШУ
На рис.6 представлен вариант двухтранзисторной схемы усилителя. Сигнал СВЧ на входе разветвляется на два канала и поступает на затворы транзисторов. Истоки этих транзисторов заземлены через RC цепи. Выходные сигналы со стоков транзисторов складываются, причем, в стоковой цепи одного из транзисторов включена СВЧ- цепь, содержащая RLC контур и индуктивное сопротивление. По существу, эта цепь играет роль СВЧ-сумматора. Выходной СВЧ-сигнал подается на входы транзисторов, осуществляя обратную связь.
Для достижения требуемой полосы частот необходимо провести оптимизацию параметров схем. В процессе оптимизации рассчитывались и включались в функцию цепи как электрические, так и шумовые характеристики усилителя. На рис.7 изображены основные характеристики усилителя: Кр(f) и F(f), рассчитанные для оптимизированной схемы. Оптимизация проводилась по следующим параметрам: индуктивностям L1, L2, L3; длинам 50-омных отрезков линий l2 и l3 и сопротивлению R4. В результате были получены следующие значения этих переменных параметров: L1=0,62 нГ, L2=0,41нГ, L3=2,25 нГ, Rп= 227Ом, l3=1,19мм, l2=0,17 мм. При оптимизации были достигнуты следующие параметры усилителя: полоса частот 7...10 ГГц; коэффициент усиления Кр более 9 дБ; неравномерность Кр не более 2 дБ; коэффициент шума 1,4
На основании проведенного проектирования была разработана топология гибридного усилителя, эскиз которого представлен на рис.8.
Аналогично может быть выполнено проектирование и других каскадов транзисторов усилителей.
При проектировании выходных усилителей мощности необходимо использовать нелинейные модели ПТШ, в которых параметры эквивалентной схемы кристалла транзистора (емкости и сопротивления) зависят от напряжений на участках схемы. Отметим также, что для выходных каскадов должен быть проведен тепловой расчет, поскольку на этих каскадах рассеивается мощность, способная существенно повысить температуру полупроводникового кристалла и вывести его из строя.
2.1.6Анализ тепловых моделей ГИС СВЧ различных конструкций
Несмотря на то, что выходная мощность усилительного модуля сравнительно невелика ( 30 мВт), последний каскад работает в электрическом режиме, при котором рассеиваемая мощность приводит к увеличению температуры полупроводникового кристалла, что в свою очередь влияет на параметры прибора в целом. Так увеличение температуры кристалла на 100С приводит к росту подвижности носителей тока (электронов) и тока насыщения, а также к снижению напряжения отсечки полевых транзисторов с барьером Шотки. Выходная мощность и коэффициент стоячей волны напряжения (КСВН) при этом изменяется, что нежелательно для бортовой аппаратуры, в которой размещен усилительный модуль.
Кроме того важность решения тепловой задачи связана с тем обстоятельством, что в техническом задании даются предельные границы изменения окружающей среды (- 600С…+850С). Если усилительный модуль находится в температурном режиме +850С, то температура элементов ГИС внутри него, как правило, на 400С выше температуры корпуса, то есть температура полупроводникового кристалла в нерабочем состоянии может повышаться до 1250С. При работе усилительного модуля температура кристалла увеличивается.
Предельные температуры, при которых наступает тепловой пробой полупроводника, составляют 1400С…1500С. Таким образом при tокр=1250 С даже небольшое увеличение температуры может привести к тепловому пробою прибора. Все это приводит к необходимости исследования температурных режимов модуля. Одним из направлений в решении тепловой проблемы является разработка конструкции ГИС СВЧ с кристаллами, расположенными в углублениях на лицевой стороне платы, обладающими лучшими электрическими способностями, теплорассеивающими и массо-габаритными характеристиками. В данном разделе рассматриваются тепловые модели двух конструкций ГИС СВЧ: с кристаллами на поверхности и с кристаллами в углублении на лицевой стороне платы.
Для количественной оценки и сравнения обоих вариантов конструкций ГИС при их изготовлении были использованы одинаковые материалы, которые обычно распространены в практике конструирования ГИС: в качестве материала основания использовался ковар (29 НК) с теплопроводностью =20 Вт/мк (ковар выбран из-за близости его КЛТР и КЛТР материала подложки платы); материалом подложки был выбран сапфир (монокристаллическая модификация Al2O3) с = 31,5 Вт/мк; связующее вещество – припой ПОС-61 с =390 Вт/мк; кристалл – арсенид галлия с =80 Вт/мк; соединительный проводник Cr-Cu-Ni-Au с =338 Вт/мк.
Тепловыделение в окружающую среду происходит в виде тепловых потоков с верхней и боковой поверхности кристалла, а также с контактных проводников, лицевой и боковой поверхностей подложки и боковой поверхности металлического основания (рис. 9), т. е. со всех частей, имеющих температуру выше, чем температура окружающей среды. Температуру окружающей среды и нижней части металлического основания примем равной 200С. Теплообмен осуществляется посредством конвекции. Контактные проводники считаются пластинчатыми с толщиной 30 мкм, то есть двумерными. Расчеты тепловых полей в сечениях А, В, С были выполнены с помощью программы «Тепло» на ПЭВМ. Для расчета тепловых полей использовалась программа решения двумерной стационарной задачи теплопроводности, основанная на решении уравнения Лапласа методом конечных элементов.
На рис. 10 показаны рассчитанные тепловые поля в сечениях А (на поверхности подложки) и В (на поверхности кристалла). Здесь изображена четвертая часть теплового поля, что позволяет судить о полной картине поля в связи с его равномерностью и симметричностью.
При наличии соединительных проводников максимальный перегрев (от 6,120С до 5,830С) наблюдается на поверхности кристалла. На границе кристалл – связующее вещество перегрев составляет от 4,660С до 4,350С, что связано с отводом части тепла от кристалла за счет конвекции в окружающую среду и через соединительные проводники. На поверхности подложки температура перегрева составляет от 3,220С до 4,50С. Если удалить соединительные проводники, то температура перегрева на поверхности кристалла повышается до 6,390С, т. е. становится больше, чем при наличии проводников, что обеспечивается отсутствием теплоотвода по выводам кристалла, имеющим высокую теплопроводность. Перегрев на границе кристалл – связующее вещество составляет 4,660С, а на поверхности подложки практически не изменяется по сравнению с вариантом с соединительными проводниками.
Эскиз второй анализируемой конструкции приведен на рис. 11. Здесь кристалл располагается в углублении в подложке, а соединительные проводники лежат в плоскости поверхности подложки.
Расчетные тепловые поля для этого случая приведены на рис. 12. Перегрев температурного поля на поверхности кристалла составляет 1,910С…2,30С. При разрыве проводников максимальная температура увеличивается до 3,30С. На границе кристалл – связующее вещество перегрев не превышает 1,810С (рис. 12б).
Из проведенного анализа можно сделать следующие выводы:
1. Температура перегрева на поверхности кристалла, лежащего на подложке, примерно в 2 – 3 раза больше температуры кристалла, углубленного кристалла полупроводника;
-
Через соединительные проводники отводится незначительная часть тепла;
-
Температурные поля от кристалла к периферии подложки существенно изменяются в конструкции с углубленным кристаллом.
2.2 Вывод
1. Проведен расчет основных параметров модуля: коэффициентов усиления Кр и шума F, потерь, мощности и т. п. Для каждого каскада. Показано, что для достижения заданных параметров: Кр = 30 дБ, F = 3 дБ, выходной мощности Рвых = 30 мВт модуль должен состоять из пяти каскадов, причем первые два – малошумящие, а два последних – усилители мощности.
2. Разработана методика проектирования малошумящего каскада усилителя (МШУ), содержащая расчетные и экспериментальные этапы.
-
Предложен метод определения четырех параметров ПТШ, необходимых для построения шумовой модели транзистора. Суть метода заключается в измерении коэффициентов шума транзистора с включенными на его входе трансформатором при нескольких состояниях трансформатора и последующем расчете шумовых параметров Fmin, Rп, GSO, BSO – из решений системы четырех уравнений. Проведены расчеты шумовых параметров для ПТШ типа «Созвездие».
-
Выбрана оригинальная схема МШУ, в которой первый транзистор реализует низкие шумы, а второй – высокий коэффициент усиления. Проведено схемотехническое проектирование усилителя и показано, что один каскад МШУ позволяет реализовать в диапазоне 7…10,5 ГГц следующие параметры: Кр = 9 дБ, F 1,6 дБ, неравномерность Кр 1 дБ.
-
Разработана топология каскада усилителя, выполненного на поликоровой подложке ( = 9,6) толщиной 0,5 мм с размерами 9 х 7,5 мм.
-
Проведен анализ тепловых моделей ГИС усилителя двух конструкций: при размещении кристалла ПТШ на подложке и с углублением кристалла ПТШ в подложку. Показано преимущество последнего способа перед первым по величине допустимого перегрева кристалла.
3. КОНСТРУКТОРСКАЯ ЧАСТЬ
3.1 Введение
Конструкторская часть дипломного проекта включает в себя следующие этапы разработки конструкции:
-
сборку отдельных каскадов и в целом ГИС усилителя на основе разработанной в предыдущем разделе топологии усилителя;
-
выбор типа корпуса для усилительного модуля;
-
выбор материала корпуса;
-
соединение ГИС с основанием;
-
герметизацию корпуса;
-
описание конструкции модуля.
3.2 Разработка ГИС усилителя
На основании топологии усилителя (рис. 8) был разработан гибридно – интегральный усилитель, выполненный на поликоровой подложке (рис. 13). Усилитель выполнен на двух поликоровых подложках толщиной h = 0,5 мм. На первой подложке расположены элементы входной части усилителя, на второй подложке – выходной части усилителя. Для обеспечения возможности подстройки схемы в топологию включены проводящие площадки прямоугольной или квадратной формы. Перемыкая площадки золотыми проводниками диаметром 30 мкм можно увеличивать или уменьшать длины микрополосковых шлейфов. Все резисторы, входящие в эквивалентную схему усилителя выполнены в планарном виде из металла с большим удельным сопротивлением – хрома. Для обеспечения возможности подстраивать сопротивления высокоомные планарные участки перемежевываются с проводящими участками из меди, покрытой золотом. Подстройка производится путем перемыкания этих проводящих участков золотыми проводниками. Конденсаторы С1…С4 сделаны навесными, объемными, состоящими из двух металлических пластинок с диэлектрической пленкой из ТаО или SiO2 между ними. Такая конструкция конденсаторов позволяет реализовать емкости 50…200 пФ. Нижние обкладки конденсаторов соединены с металлическим основанием, на котором располагаются подложки, а верхние обкладки конденсаторов соединены со схемой золотыми проводниками. Транзисторы «Созвездие» выполнены на металлических подставках, которые привариваются к основанию. Электроды транзисторов соединяются с элементами схемы золотыми проводниками. Индуктивные элементы выполнены в виде отрезков золотых проводников длиной l и диаметром d. Величина индуктивности L связана с этими параметрами приближенным соотношением:
.
Микрополосковые линии на входе и выходе имеют ширину W = 0,5 мм, что соответствует волновому сопротивлению z0 = 50 Ом.
3.3 Выбор типа корпуса для усилительного модуля
Усилительные модули для бортовой аппаратуры в последние годы выполняются в виде гибридных интегральных схем (ГИС) усилителей на полевых транзисторах с барьером Шотки, заключенных в герметичный корпус. Достоинство ГИС- малые массо-габаритные параметры и высокая надежность.
Корпус является узловым элементом модуля. Он оказывает существенное влияние на его работоспособность, надежность, долговечность, механическую и климатическую устойчивость и стоимость. Конструкция и технология изготовления корпуса определяют степень герметичности и ремонтопригодности модуля, а также уровень интеграции и массо-габаритные параметры модуля и бортовой РЭА в целом.
Обычно усилительные модули выпускаются небольшими сериями, при широкой номенклатуре, что требует в принципе, большого разнообразия конструктивных вариантов корпусов. В тоже время для изготовления необходимо применять универсальные методы, в противном случае трудоемкость изготовления модулей и ее стоимость будут в значительной степени определятся трудоемкостью и стоимостью изготовления корпуса, а не собственно ГИС усилителя. Кроме того, следует отметить, что влияет не только на электрические и эксплуатационные характеристики модуля, но и на выбор способа его сборки, монтажа и герметизации. Поэтому разработка конструкции корпуса усилительного модуля и технологии его изготовления является комплексной задачей, требующей одновременного решения проблем, которые зачастую предъявляют противоречивые требования, такие же как в конструктивном и технологическом плане.
Значительная часть выпускаемых в мире микросхем низкочастотного диапазона, изготавливается с использованием металлических, металлостеклянных и керамических корпусов. Положение с корпусами для модулей СВЧ существенно отличается от НЧ устройств. Во-первых, благодаря специфике модулей СВЧ, связанной с использованием коаксиальных выводов энергии, применяются в основном толстостенные корпуса. Во-вторых, размеры корпусов для СВЧ модулей таковы, что внутри корпуса могут возникать паразитные виды колебаний электромагнитных волн, влияющих на выходные параметры модуля. В-третьих, очень часто в модулях СВЧ используются ГИС с полупроводниковыми приборами открытого (некорпусированного) вида, что налагает жесткие условия на герметизацию всего модуля в целом.
В СВЧ модулях применяются, в основном, металлические корпуса. Из 85 типов усилительных модулей, выпускаемых американскими фирмами, почти три четверти изготовляются в металлических корпусах.
Конструктивно корпуса для модулей СВЧ имеют прямоугольную форму и могут быть разделены на три типа; рамочные, чашечные и пенальные.
Принципиальные схемы указанных конструкций корпусов приведены на рис.14.
В корпусах пенального типа (рис.14а) одна или несколько микрополосковых плат (МПП) располагаются и закрепляются на рамке (основании). На двух противоположных сторонах рамки закрепляются две стенки, служащие для закрепления НЧ и СВЧ соединителей. НЧ - соединитель - металлический штырь диаметром 1 мм, закрепленный в отверстии стенки корпуса с помощью изолятора.
СВЧ-соединитель - микрокоаксиал, впаянный в корпус.
Рамка с установленной платой (подложкой) и соединителями вставляется в кожух прямоугольной формы. При этом герметизация модуля проводится по торцу периметра в местах стыка кожуха и рамки. В качестве материала рамки и кожуха используется, как правило, титан или сплав - ковар, обладающие близкими по коэффициенту линейного термического расширения (КЛТР) значениями с материалом подложки.
К преимуществам корпусов пенального типа следует отнести возможность изготовления высокопроизводительными технологическими процессами - штамповкой и сваркой тонколистового материала.
Недостатком корпусов пенального типа является принципиальная невозможность создания надежного заземления по двум сторонам основания, параллельным образующей кожуха. Это ограничивает частотный диапазон работы модуля.
Корпуса пенального типа недостаточно жесткие. Кроме того, в них ввод и вывод СВЧ энергии может быть размещен только по двум противоположным сторонам.
Корпуса чашечного типа (рис.14б) представляют собой открытую с одной стороны коробку, на основании которой устанавливается плата. Эти корпуса обладают достаточной жесткостью конструкции и обеспечивают хорошую экранировку. К недостаткам их следует отнести возможность только одностороннего монтажа плат и сложности их установки.
Корпус рамочного типа (рис.14в) представляет собой открытую с двух сторон рамку, в стенках которой устанавливаются НЧ и СВЧ соединители. Обычно толщина стенок этих корпусов составляет 2-3 мм, что придает им достаточную жесткость и прочность. МПП крепятся непосредственно или через переходную рамку к внутренним рамкам корпуса.
Рамочный корпус позволяет за счет возможности двухстороннего монтажа достичь высокой интеграции. Такая конструкция упрощает сборку, монтаж, ремонт и реставрацию платы.
На основании проведения всестороннего анализа, для усилительного модуля был выбран корпус рамочного типа, по следующим соображениям:
1. Рабочие частоты модуля (7...10 ГГц) достаточно высокие, а потому все соединения между элементами корпуса должны обеспечивать хорошую экранировку. В корпусе рамочного типа число таких соединений небольшое;
2. Усилительный модуль имеет высокую степень интеграции и вся ГИС усилителя может выполнятся на двух поверхностях подложки;
3. Модуль предназначен для использования в бортовой аппаратуре, поэтому он должен иметь высокую вибростойкость и надежный теплоотвод от кристалла, полупроводника, что обеспечивает корпус рамочного типа;
4. СВЧ- соединители должны быть плотно вмонтированы в стенки корпуса, для предотвращения натекания (расгерметизации) корпуса.
5. Модуль имеет достаточно высокое значение коэффициента усиления (Кр>0 дБ), что требует использования в нем многокаскадной схемы усилителя с числом каскадов более 5. Поскольку каскады однотипные и выходная мощность невелика, то усилительный модуль набирается из 5 одинаковых каскадов. Такая конструкция модуля имеет существенные преимущества перед цельной 5-каскадной схемой, поскольку настройка одного каскада менее трудоемка, а изготовление каскадов может вестись крупными партиями, что снижает стоимость модуля.
С другой стороны каскады должны быть жестко соединены друг с другом, что наиболее удобно делать в корпусе на одном металлическом основании. Для крепления каскадов помимо пайки можно использовать и механическое крепление микровинтами.
3.4. Выбор материала корпуса
Выбор материала корпуса делается на основании следующих требований, предъявляемых к материалу:
- минимальный вес;
- коррозионная стойкость;
- минимальный КЛТР, соизмеримый с КЛТР материала подложки;
- высокие электро- и теплопроводность;
- технологичность механической обработки.
В таблице 2 приведены параметры наиболее распространенных конструкционных материалов для корпусов и подложек.
Анализ таблицы 2 показывает, что наилучшими тепловыми параметрами обладают титан и ковар. Их теплопроводность (
20 Вт/мград) наиболее близка к теплопроводности поликора (25 Вт/мград)и по КЛТР эти материалы близки друг к другу. Единственный недостаток ковара его плотность, примерно в 2 раза больше плотности титана и 3 раза больше плотности алюминия.
Через соединительные проводники отводится незначительная часть тепла;
Температурные поля от кристалла к периферии подложки существенно изменяются в конструкции с углубленным кристаллом.
Предложен метод определения четырех параметров ПТШ, необходимых для построения шумовой модели транзистора. Суть метода заключается в измерении коэффициентов шума транзистора с включенными на его входе трансформатором при нескольких состояниях трансформатора и последующем расчете шумовых параметров Fmin, Rп, GSO, BSO – из решений системы четырех уравнений. Проведены расчеты шумовых параметров для ПТШ типа «Созвездие».
Выбрана оригинальная схема МШУ, в которой первый транзистор реализует низкие шумы, а второй – высокий коэффициент усиления. Проведено схемотехническое проектирование усилителя и показано, что один каскад МШУ позволяет реализовать в диапазоне 7…10,5 ГГц следующие параметры: Кр = 9 дБ, F 1,6 дБ, неравномерность Кр 1 дБ.
Разработана топология каскада усилителя, выполненного на поликоровой подложке ( = 9,6) толщиной 0,5 мм с размерами 9 х 7,5 мм.
Проведен анализ тепловых моделей ГИС усилителя двух конструкций: при размещении кристалла ПТШ на подложке и с углублением кристалла ПТШ в подложку. Показано преимущество последнего способа перед первым по величине допустимого перегрева кристалла.
сборку отдельных каскадов и в целом ГИС усилителя на основе разработанной в предыдущем разделе топологии усилителя;
выбор типа корпуса для усилительного модуля;
выбор материала корпуса;
соединение ГИС с основанием;
герметизацию корпуса;
описание конструкции модуля.
В последние годы все больше внимания разработчиков привлекает – нитрид алюминия. Его теплопроводность равна 160 Вт/град, что сопоставимо с алюминиевыми сплавами (дюралью). Если в качестве подожки ГИС усилителя выбрать нитрид алюминия, то такую подложку целесообразно размещать в корпусе из сплавов алюминия. Такая конструкция модуля позволяет в 3 раза уменьшить вес модуля.
Таблица 2.
| Материал | Диэлектрическая проницаемость на частоте 10 ГГц, при темпе ратуре 200С | Плотность 103кг/м3 | Коэффициент теплопроводности при температуре 200С, Вт/мград | КЛТР при температуре от 200С до 2000С, 10-7 1/град |
Материал для МПП | Поликор | 9,8 | 4 | 25 | 75 |
Сапфир | 9,6 | 4,1 | 31,5 | 20 | |
Ситал | 10 | 3,19 | 1,045 | 32 | |
Керамика | 9,2 | 3,86 | 13,1 | 60 | |
Материал для корпусов | Конструкционные стали | - | 7,8 | 46 | 110 |
Ковар 29 НК | - | 8,2 | 20 | 48 | |
Алюминиевые сплавы | - | 2,78 | 170 | 225 | |
Медные сплавы | - | 8,5 | 110 | 200 | |
Медь | - | 8,89 | 370 | 170 | |
Титан | - | 4,4 | 21,9 | 83 | |
Прессматериал АГ - 4 | - | 1,9 | 0,25 | 130 | |
Материал для полупровод-никовых кристаллов | Кремний | 11,8 | 2,3 | 84 | 42 |
Германий | 16 | 5,3 | 58 | 57 | |
Арсенид галлия | 12,5 | 5,3 | 50 (80) | 52 | |
Алмаз | 5,7 | 3,5 | 2000 | 12 |
3.5 Соединение микросхем с основанием
В последние годы для соединения микросхем с основанием широко применяется способ вибрационной пайки на воздухе, в которой либо используется, либо не используется флюс. Этот способ пайки заключается в сообщении одной из соединяемых деталей механических низкочастотных или ультразвуковых колебаний (возвратно – поступательных перемещений) относительно другой неподвижной детали сразу после расплавления припоя. 21.
Для обеспечения флюсовой вибрационной пайки на воздухе используют коррозионно – активные флюсы, например, ФТС. При этом пайку проводят припоями типа ПОС-61 никелированных им медненных деталей без нанесения легкоплавких покрытий на основе олова или индия. Однако это нежелательно из-за трудности удаления остатков флюса из паянного шва ряда соединений, например, плат микросхем с металлическим основанием.
В работе 21 был предложен способ применения в качестве флюса некоррозионно-активных органических водорастворимых жидкостей, например, глицерина. Считалось, что глицерин является химически нейтральной жидкостью и не удаляет окисные пленки с паяемых поверхностей. Авторы доказали, что глицерин применим в качестве для соединения поликоровых или сапфировых плат микросхем с коваровым или титановым основанием путем вибрационной пайки на воздухе припоем ПОС-61.
В качестве образцов плат применяли поликоровые подложки, на которые с одной стороны наносили металлические покрытия типа хром – медь - никель -золото толщиной 0,025 мкм - 5 мкм – 0,4 мкм – 0,4 мкм соответственно.
Металлическим основанием служили коваровые или титановые пластины толщиной 1 мм (рис.15) с никелевым покрытием. Готовый полностью расплавляемый припой ПОС-61 использовался в виде навесок (шариков) диаметром 2-3 мм, расположенных в отверстиях основания. Глицерин наносили непосредственно на паяемые поверхности. Пайку проводили на воздухе путем нагрева оснастки с собранными деталями на столике нагревателя до 190…2000С.
Вибрацию в процессе пайки осуществляли после расплавления припоя путем сообщения основанию механических колебаний относительно неподвижной поликоровой платы вручную с частотой 1-2 Гц с амплитудой перемещения 0,05…0,2 мм. Время притирки пластины к подложке не превышало 2 минут. После окончания вибрации (притирки) на соединяемые детали накладывали давление = 0,02…0,03 кг/см