Файл: План Введение. Основные понятия математической статистики. Статистическая обработка результатов психологопедагогических исследований. Использованная литература. Методы математической статистики план.rtf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 61

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


 

Признак X

 

Всего

 

0

1

Признак

Y

1

0

А

С

В

D

A + B

C + D

Итого

A + C

B + D

N
















 

В общем виде формула коэффициента корреляции Пирсона для дихотомических данных имеет вид

 

; (3)

 

Таблица 6.3

Пример данных в дихотомической шкале

Шифр испытуемого

Переменная X

Переменная Y

1

2

3

4

5

6

7

8

9

10

0

1

0

0

1

2

0

1

0

0

0

1

1

0

1

0

0

1

0

1

 

Таблица 6.4

Таблица сопряженности для данных из таблицы 6.3

 

Признак X

 

Всего

 

0

1

Признак

Y

1

0

2

4

3

1

6

5

Итого

6

4

10
















Подставим в формулу данные из таблицы сопряженности (см. табл. 6.4), соответствующей рассматриваемому примеру:

 
.

Таким образом, коэффициент корреляции Пирсона для выбранного примера равен 0,32, то есть зависимость между семейным положением студентов и фактами исключения из университета незначительная.

Пример 2. Если обе переменные измеряются в шкалах порядка, то в качестве меры связи используется коэффициент ранговой корреляции Спирмена (Rs). Он вычисляется по формуле

  ; (4)

где Rs – коэффициент ранговой корреляции Спирмена; Di – разность рангов сравниваемых объектов; N – количество сравниваемых объектов.

Значение коэффициента Спирмена изменяется в пределах от –1 да + 1. В первом случае между анализируемыми переменными существует однозначная, но противоположено направленная связь (с увеличением значений одной уменьшается значения другой). Во втором – с ростом значений одной переменной пропорционально возрастает значение второй переменной. Если величина Rs равна нулю или имеет значение, близкое к нему, то значимая связь между переменными отсутствует.

В качестве примера вычисления коэффициента Спирмена используем данные из таблицы 6.5.

Таблица 6.5


Данные и промежуточные результаты вычисления значения коэффициента

ранговой корреляции Rs

Качества

Ранги, присвоенные экспертом

Разность рангов

D

Квадрат разности рангов

D2

1-м

2-м

 

 

01

02

03

04

05

06

07

08

1

5

6

8

7

3

4

2

2

7

3

6

8

4

5

1

–1

–2

3

2

–1
–1
–1

1

1

4

9

4

1

1

1

1

 

Сумма квадратов разностей рангов Di = 22

 

 

 

Подставим данные примера в формулу для коэффициента Смирмена:

 



 

Результаты вычисления позволяют утверждать о наличии достаточно выраженной связи между рассматриваемыми переменными.

Статистическая проверка научной гипотезы. Доказательство статистической достоверности экспериментального влияния существенно отличается от доказательства в математике и формальной логике, где выводы носят более универсальный характер: статистические доказательства не являются столь строгими и окончательными – в них всегда допускается риск ошибиться в выводах и потому статистическими методами не доказывается окончательно правомерность того или иного вывода, а показывается мера правдоподобности принятия той или иной гипотезы.

Педагогическая гипотеза (научное предположение о преимуществе того или иного метода и т. п.) в процессе статистического анализа переводится на язык статистической науки и заново формулируется, по меньшей мере, в виде двух статистических гипотез. Первая (основная) называется нулевой гипотезой0), в которой исследователь говорит о своей исходной позиции. Он (априори) как бы декларирует, что новый (предполагаемый им, его коллегами или оппонентами) метод не обладает какими-либо преимуществами, и потому с самого начала исследователь психологически готов занять честную научную позицию: различия между новым и старым методами объявляются равными нулю. В другой,
альтернативной гипотезе1) делается предположение о преимуществе нового метода. Иногда выдвигается несколько альтернативных гипотез с соответствующими обозначениями.

Например, гипотеза о преимуществе старого метода (H2). Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия, скажем, в средних арифметических экспериментальной и контрольной групп настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:

– первый уровень – 5% (в научных текстах пишут иногда р = 5% или а≤0,05, если представлено в долях), где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе испытуемых для каждого эксперимента;

– второй уровень – 1%, т. е. соответственно допускается риск ошибиться только в одном случае из ста (а≤0,01, при тех же требованиях);

– третий уровень – 0,1%, т. е. допускается риск ошибиться только в одном случае из тысячи (а≤0,001). Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов эксперимента и потому редко используется.

При сравнении средних арифметических экспериментальной и контрольной групп важно не только определить, какая средняя больше, но и насколько больше. Чем меньше разница между ними, тем более приемлемой окажется нулевая гипотеза об отсутствии статистически значимых (достоверных) различий. В отличие от мышления на уровне обыденного сознания, склонного воспринимать полученную в результате опыта разность средних как факт и основание для вывода, педагог-исследователь, знакомый с логикой статистического вывода, не будет торопиться в таких случаях. Он скорее всего сделает предположение о случайности различий, выдвинет нулевую гипотезу об отсутствии достоверных различий в результатах экспериментальной и контрольной групп и лишь после опровержения нулевой гипотезы примет альтернативную.

Таким образом, вопрос о различиях в рамках научного мышления переводится в другую плоскость. Дело не только в различиях (они почти всегда есть), а в величине этих различий и отсюда – в определении той разницы и границы, после которого можно сказать: да, различия неслучайны, они статистически достоверны, а значит, испытуемые этих двух групп принадлежат после эксперимента уже не к одной (как раньше), а к двум различным генеральным совокупностям и что уровень подготовленности учащихся, потенциально принадлежащих этим совокупностям, будет существенно отличаться. Для того чтобы показать границы этих различий, используются так называемые
оценки генеральных параметров.

Рассмотрим на конкретном примере (см. табл. 6.6), как с помощью математической статистики можно опровергнуть или подтвердить нулевую гипотезу.

Допустим, необходимо определить зависит ли эффективность групповой деятельности студентов от уровня развития в учебной группе межличностных отношений. В качестве нулевой гипотезы выдвигается предположение, что такой зависимости не существует, а в качестве альтернативной – зависимость существует. Для этих целей сравниваются результаты эффективности деятельности в двух группах, одна из которых в этом случае выступает в качестве экспериментальной, а вторая – контрольной. Чтобы определить, является ли разность между средними значениями показателей эффективности в первой и во второй группе существенной (значимой), необходимо вычислить статистическую достоверность этой разницы. Для этого можно использовать t – критерий Стьюдента. Он вычисляется по формуле:

  ; (5)

где X1 и X2 – среднее арифметическое значение переменных в группах 1 и 2; М1 и М2 – величины средних ошибок, которые вычисляются по формуле:

; (6)

где - средняя квадратическая, вычисляемая по формуле (2).

Определим ошибки для первого ряда (экспериментальная группа) и второго ряда (контрольная группа):

 

,

.

 

Находим значение t – критерия по формуле:

 

.

Вычислив величину t – критерия, требуется по специальной таблице определить уровень статистической значимости различий между средними показателями эффективности деятельности в экспериментальной и контрольной группах. Чем выше значение t – критерия, тем выше значимость различий.

Для этого t расчетное сравниваем с t табличным. Табличное значение выбирается с учетом выбранного уровня достоверности (p = 0,05 или p = 0,01), а также в зависимости от числа степеней свободы