Файл: 1 Кодирование текстовых и символьных данных.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 111

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1.6. Кодирование текстовых и символьных данных В двоичной системе счисления кодирование "внешних" символов основывается на сопоставлении каждому из них определенной группы двоичных знаков. Двоичное кодирование символьных данных производится заданием кодовых таблиц, в которых каждому символу ставится в соответствие одно- или двухбайтовый код. Восьми двоичных разрядов достаточно для кодирования 256 различных символов. Этого количества достаточно, чтобы выразить все символы английского и русского алфавита, а также знаки препинания, символы основных арифметических операций и некоторые специальные символы.Наиболее популярная таблица ASCII (American Standard Code for Information Interchange, американский стандартный код информационного обмена) разработана институтом стандартизации США (American National Standard Institute, ANSI) в 1981 году (табл. 1.10).Коды с 0 до 127 составляют базовую (основную) таблицу, коды со 128 по 255 — расширенную (дополнительную) таблицу. Дополнительная таблица отдана национальным алфавитам и символам псевдографики.Аналогичные системы кодирования текстовых данных были разработаны и в других странах. Так, в СССР действовала система кодирования КОИ-8 (код информационного обмена восьмизначный). Компанией Microsoft была введена кодировка символов русского языка, известная как кодировка Windows-1251. Во многих азиатских странах 256 кодов не хватило. В 1991 году производители программных продуктов (Microsoft, IBM, Apple) выработали единый стандарт Unicode 3.0. Этот код построен по 31-битной схеме. Все текстовые документы в этой кодировке вдвое длиннее, зато она содержит буквы латинского и многих национальных алфавитов, спецсимволы и т. п. Таблица 1.10. Базовая таблица кодировки ASCII

1.7. Кодирование графических данных

1.8. Кодирование звуковой информации

1.9. Структуры данных

1.10. Файлы и файловая структура

1.11. Измерение и представление информации

1.12. Теоремы Шеннона

1.13. Математические основы информатики

и . Очевидно, что маршрут можно задать последовательностью его вершин или последовательностью ребер . Маршрут называется цепью, если все его ребра различны, и простой цепью, если все его вершины, кроме, возможно, крайних, различны. Гамильтоновой цепью называется простая цепь, содержащая все вершины графа.

Маршрут называется циклическим, если . Циклическая цепь называется циклом, а циклическая простая цепь — простым циклом. Число ребер в маршруте — длина маршрута. Гамильтоновым циклом называется простой цикл, содержащий все вершины графа. Длина всякого цикла не менее трех в графе без петель и кратных ребер. Минимальная из длин циклов графа называется его обхватом.

Важным понятием теории графов является связность. Граф называется связным, если любые две его несовпадающие вершины соединены маршрутом.

Р
ис. 1.14.
Граф

В подавляющем большинстве случаев граф задается матрицей. Для расчетов на ЭВМ это единственный способ. Наиболее часто граф задают с помощью матриц смежности и инциденций.

Рассмотрим изображенный на рис. 1.14 граф. Как для орграфов, так и для неориентированных графов можно определить матрицу смежности вершин. Это квадратная матрица



порядка, где  — число вершин. Ее строки и столбцы соответствуют вершинам графа. Элементы матрицы смежности вершин равны числу дуг, идущих из -той вершины в
-ю вершину. Если орграф не содержит параллельных дуг, то матрица является бинарной и состоит только из нулей и единиц. В случае неориентированного графа ему вместе с ребром принадлежит и ребро , поэтому матрица смежности вершин будет симметрической. Матрица смежности вершин однозначно определяет структуру графа. Аналогично можно определить и матрицу смежности дуг.

Определим для рассматриваемого графа без ребра матрицу инциденций. Это прямоугольная матрица размерности , где  — число вершин, а  — число дуг. Элементы этой матрицы равны плюс единице, если дуга исходит из -й вершины (начальная вершина), минус единице, если дуга входит в -ю вершину (конечная вершина), нулю, если дуга не инцидентна -й вершине. В случае неориентированного графа элементами матрицы будут числа единица и нуль, т. е.

.

Строки матрицы инциденций называют векторами инциденций графа . Матрица инциденций



также однозначно определяет структуру графа.

Весьма важным видом графа является связный граф, не имеющий циклов, он называется деревом. В дереве любые две вершины связаны единственным путем.

Рассмотрим связный граф

, пусть и  — две его вершины. Длина кратчайшего -маршрута называется расстоянием между вершинами и , обозначается через . Очевидно, что расстояние между вершинами является простой цепью и . Для любой вершины величина

(1.13.6)

называется эксцентриситетом вершины . Максимальный из всех эксцентриситетов вершин называется диаметром графа и обозначается , т. е.

. (1.13.7)

Минимальный из эксцентриситетов вершин графа называется его радиусом и обозначается через :

. (1.13.8)

Вершина периферийная, если ее эксцентриситет равен диаметру графа, т. е. . Простая цепь, расстояние между концами которой равно , называется диаметральной цепью.

Рис. 1.15. Центр графа

В
ершина центральная, если . Множество всех центральных вершин графа называется его
центром. Центром может быть единственная вершина графа или несколько вершин. На рис. 1.15 , , . Таким образом, . Периферийные вершины и , диаметральные цепи и , центральная вершина .

1 Клод Элвуд Шеннон (1916—2001 гг.) — американский математик.

2 Ральф Хартли (1881—1970 гг.) — американский инженер и изобретатель.

3 Джино Фано (1871—1952 гг.) — итальянский математик.

4 Огастес Морган (де Морган) (1806—1875 гг.) — шотландский математик и логик.

5 Леонард Эйлер (1707—1783 гг.) — швейцарский математик.

6 Джон Венн (1834—1923 гг.) — английский математик и логик.