Файл: Учебник для студентов медицинских вузов и слушателей последипломного образования.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 535

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Одним из наиболее хорошо изученных эпигенетических механизмов является
метилирование ДНК
, проходящее, чаще всего, по 5-му углероду цитозина. Эта модификация ДНК играет значительную роль в регуляции экспрессии генов эукариот. 5’-нетранслируемые области генов содержат последовательности, обогащенные CpG-парами, так называемые CpG- островки. Во многих случаях инактивация гена достигается за счет метилирования этих последовательностей, причем такое состояние может стабильно поддерживаться в течение многих поколений клеток. Метильные группы нарушают взаимодействия между ДНК и белками, препятствуя тем самым связыванию транскрипционных факторов.
Кроме того, метилированные районы ДНК могут взаимодействовать с репрессорами транскрипции.
Напомним, что инактивация одной из Х-хромосом в женских соматических клетках происходит за счет ее гетерохроматинизации.
Метилирование цитозинов в гетерохроматинизированной Х-хромосоме закрепляет это состояние, которое затем устойчиво передается дочерним клеткам во всех последующих поколениях. В инактивированной Х- хромосоме подавляющее большинство генов находятся в состоянии метилирования. Различный характер метилирования аллелей некоторых генов в мужских и женских половых клетках объясняет феномен
геномного
импринтинга
, который заключается в разном проявлении мутантного аллеля в зависимости от его прохождения через материнский или отцовский гаметогенез. В результате избирательного метилирования определенных районов хромосом в процессе сперматогенеза или оогенеза прекращается транскрипция расположенных в этих районах генов. Предполагается, что существует не менее 100 генов, подвергающихся импринтингу, причем эти гены сгруппированы в определенных районах хромосом. В настоящее время идентифицировано более 40 таких генов. Известно влияние некоторых отцовских и материнских генов на вес плода, степень развития плаценты и другие особенности внутриутробного развития. В медицинской генетике
выделяют группу болезней геномного импринтинга, к которым, в частности, относятся некоторые болезни экспансии. Однако обо всем этом мы будем говорить более подробно в следующих главах.
К разряду эпигенетических модификаций относится регуляция экспрессии генов молекулами РНК, которая может происходить на различных уровнях – транскрипции, процессинга преРНК, стабилизации мРНК и трансляции. К концу 90-х годов было накоплено много экспериментальных данных о присутствии в клетках различных типов РНК
(не считая тРНК и рРНК), не обладающих белок-кодирующей способностью и не транслирующихся в полипептиды. Первые указания на существование таких РНК были получены еще до открытия интронов при обнаружении многочисленного класса гетерогенных ядерных РНК (hnRNA), в 10-30 раз превосходящих по кинетической сложности класс мРНК. Определенные типы РНК могут обладать каталитической активностью (
рибозимы
), связывать небольшие молекулы, такие как витамины, аминокислоты, азотистые основания, ионы металлов (
аптамеры
) или иметь обе эти активности (
аптазимы
).
Множество стабильных мРНК-подобных, полиаденелированных и сплайсированных транскриптов не имеют открытых рамок считывания. Нельзя сбрасывать со счетов и самый многочисленный класс образующихся в процессе сплайсинга и, как оказалось, достаточно устойчивых интронных РНК, транскрибируемых синхронно с белок- кодирующими РНК. Оказалось, что нетранслируемые РНК принимают участие в разнообразных и очень важных генетических процессах, таких как регуляция транскрипции, процессинг и модификация преРНК, поддержание стабильности и трансляции мРНК, компенсация дозы гена, импринтинг, метилирование ДНК и ремоделирование хроматина. РНК размером от 100 до
200 нуклеотидов (sRNA) выполняют роль регуляторов трансляции в бактериальных клетках. Более протяженные РНК вовлечены в универсальную систему избирательной инактивации (silencing) генов высших.


Последнее явление, получившее название
РНК-интерференция
(RNAi)
, было открыто случайно, когда было обнаружено, что двунитевые РНК, инъецируемые или скармливаемые взрослым особям Caenorhabditis elegans, действуют как триггеры, вызывая избирательную и часто наследуемую инактивацию гомологичных генов. В дальнейшем было показано, что РНК- интерференция характерна для очень многих видов растений и животных.
По-видимому, этот общий механизм эволюционировал как система защиты от РНК-содержащих вирусов и, возможно, от мобилизации транспозонов.
РНК-интерференция включает расщепление экзогенных или эндогенных триггерных двунитевых РНК на небольшие 21-23-нуклеотидные фрагменты
(siRNA), которые в составе сложных РНК-нуклеазных комплексов действуют как каталитические кофакторы для избирательной деградации гомологичной мРНК – рис. 30.
Рисунок 30. Механизм РНК-интерференции
Сходный механизм может быть вовлечен в избирательное метилирование геномных последовательностей и ремоделирование хроматина. РНК-триггеры, гомологичные промоторным областям генов, могут инактивировать гены на транскрипционном уровне. Экзогенные шпилечные РНК также могут вызывать деградацию гомологичных мРНК с использованием механизма РНК-интерференции. Подобные шпилечные РНК могут естественным образом экспрессироваться с инвертированных повторов или с LTR-повторов расположенных в обратной ориентации на небольшом расстоянии друг от друга. По некоторым оценкам инвертированные повторы в интронах, гомологичные экзонам других генов, встречаются в геноме человека с достаточно высокой частотой. Таким образом, РНК- интерференцию можно рассматривать как универсальный широко распространенный механизм РНК-зависимого контроля экспрессии генов, действующий на самых разных уровнях.

Посттранскрипционная регуляция экспрессии многих генов осуществляется путем прямой несовершенной гибридизации мРНК
с
микроРНК
(miRNA)
– членами большого семейства некодирующих РНК размером от 19 до 25 нуклеотидов. Антисмысловые микроРНК идентифицированы у многих видов животных и растений и даже у вирусов.
У человека клонировано более 500 различных типов микроРНК, однако, возможно, их реальное число вдвое больше. Обычно микроРНК вырезаются из более длинных предшествующих молекул со шпилечной структурой (pre- miRNA), которые на более раннем этапе образуются из первичных кэпированных и полиаденелированных транскриптов
(pri-miRNA).
Поскольку гибридизация с 3’-нетранслируемыми районами мРНК не является совершенной, предполагается, что одна микроРНК может одновременно инактивировать более 200 различных транскриптов. Таким образом, множество микроРНК потенциально может участвовать в эпигенетическом контроле экспрессии около 30% генов человека. В настоящее время на примере многих онкологических заболеваний показано, что ключевая роль в индукции канцерогенеза принадлежит нарушениям в эпигенетической регуляции экспрессии онкогенов и генов супрессоров опухолей, осуществляемой микроРНК.
Таким образом, следует выделять три формы наследственной изменчивости: мутационную, вариационную и эпигенетическую, причем первые две обусловлены изменением структурных компонентов генома, тогда как последняя – нарушением регуляции экспрессии генов.
Эпигенетическая регуляция резко увеличивает возможности взаимодействий между генами, их продуктами и факторами окружающей среды. Наряду с мутациями, вариациями и рекомбинацией, эпигенетическая изменчивость является важнейшей составляющей, обеспечивающей наследственную пластичность видов.
Глава 1.15. Геномика, проект «Геном человека»


В конце ХХ векамолекулярные технологии развивались настолько интенсивно, что были созданы предпосылки для планомерного изучения структуры геномов разных видов живых существ, включая человека. Одной из наиболее значимых целей этих проектов является определение полной нуклеотидной последовательности геномных ДНК. Таким образом, родилась новая наука -
геномика
Начало нового тысячелетия ознаменовалось крупнейшим открытием в области геномики – расшифрована структура генома человека. Новость оказалась настолько значимой, что стала предметом обсуждения между президентами ведущих стран мира. Однако на многих людей это сообщение не произвело впечатления. В первую очередь это связано с недостаточным пониманием того, что такое геном, какова его структура и что значит ее расшифровка? Имеет ли эта новость отношение к медицине и может ли коснуться каждого из нас? Что такое молекулярная медицина и связана ли ее развитие с расшифровкой структуры генома?Более того, у некоторых людей возникли опасения, не грозит ли в очередной раз новое открытие ученых человечеству? Не будут ли использованы эти данные в военных целях? Не последует ли за этим всеобщее принудительное генетическое обследование - своеобразная генетическая паспортизация населения? Не явится ли наш геном предметом анализа и насколько конфиденциальна будет полученная информация? Все эти вопросы в настоящее время активно обсуждаются в научном сообществе.
Конечно, геномика начиналась не с человека, а с гораздо более просто организованных живых существ. В настоящее время расшифрована нуклеотидная последовательность геномной ДНК многих сотен видов микроорганизмов, большинство из которых являются болезнетворными. Для прокариот полнота анализа оказалась абсолютной, то есть не остается не расшифрованным ни одного нуклеотида! В результате идентифицируются не только все гены этих микроорганизмов, но и определяются аминокислотные последовательности кодируемых ими белков. Мы уже неоднократно
отмечали, что знание аминокислотной последовательности белка позволяет довольно точно прогнозировать его структуру и функции. Открывается возможность получения антител к этому прогнозируемому белку, его изоляции из микроорганизма и прямого биохимического анализа. Давайте задумаемся, что это означает для разработки принципиально новых методов борьбы с инфекциями, если врач не только знает, как устроены гены инфицирующего микроорганизма, но и какова структура и функции всех его белков? Сейчас в микробиологии происходят грандиозные изменения в связи с появлением огромного количества новых знаний, значение которых в настоящее время мы не до конца понимаем. По-видимому, понадобятся еще десятилетия, для того чтобы приспособить эту новую информацию к нуждам человечества, в первую очередь, в области медицины и сельского хозяйства.
Переход от прокариот к эукариотам в плане расшифровки структуры генома сопровождается большими трудностями и не только потому, что длина ДНК высших в тысячи, а иногда в сотни тысяч раз больше, но и структура ее становится более сложной. Вспомним, что в геноме высших появляется большое количество некодирующих ДНК, значительную часть которых составляют повторяющиеся последовательности. Они вносят значительную путаницу в правильную стыковку уже расшифрованных фрагментов ДНК. А, кроме того, тандемные повторы сами трудно поддаются подобной расшифровке. В области локализации таких повторов ДНК может иметь необычную конфигурацию, что затрудняет ее анализ. Поэтому в геноме одного из видов микроскопического круглого червя (нематоды) - первого многоклеточного организма, для которого удалось определить нуклеотидную последовательность ДНК, - уже осталось некоторое число неясных мест. Правда, их удельный вес составляет менее сотой процента от общей длины ДНК, и эти неясности не касаются генов или регуляторных элементов. Нуклеотидная же последовательность всех 19 099 генов этого червя, распределенных на площади в 97 миллионов пар оснований, была

определена полностью. Поэтому работу по расшифровке генома нематоды следует признать весьма успешной.
Еще больший успех связан с расшифровкой генома дрозофилы, лишь в
2 раза уступающего по размеру ДНК человека и в 20 раз превосходящего
ДНК нематоды. Несмотря на высокую степень генетической изученности дрозофилы, около 10% ее генов были до этого момента неизвестны. Но самым парадоксальным является тот факт, что у гораздо более высоко организованной по сравнению с нематодой дрозофилы количество генов оказалось меньше, чем у микроскопического круглого червя! С современных биологических позиций это трудно объяснить. Больше генов, чем у дрозофилы, присутствует и в расшифрованном геноме растения из семейства крестоцветных - арабидопсиса, широко используемого генетиками в качестве классического экспериментального объекта.
Разработка геномных проектов сопровождалась интенсивным развитием многих областей науки и техники. Так, мощный импульс для своего развития получила
биоинформатика
. Был создан новый математический аппарат для хранения и обработки огромных массивов информации; сконструированы системы суперкомпьютеров, обладающие невиданной мощностью; написаны тысячи программ, позволяющих в считанные минуты проводить сопоставительный анализ различных блоков информации, ежедневно вводить в компьютерные базы новые данные, получаемые в различных лабораториях мира, и адаптировать новую информацию к той, которая была накоплена ранее. Одновременно были разработаны системы для эффективной изоляции различных элементов генома и автоматического секвенирования, то есть определения нуклеотидных последовательностей
ДНК.
На этой базе были сконструированы мощные роботы, значительно ускоряющие секвенирование и делающие его менее дорогостоящим.
Развитие геномики, в свою очередь, привило к открытию огромного количества новых фактов. Значение многих из них еще предстоит оценить в
будущем. Но и сейчас очевидно, что эти открытия приведут к переосмыслению многих теоретических положений, касающихся возникновения и эволюции различных форм жизни на Земле. Они будут способствовать лучшему пониманию молекулярных механизмов, лежащих в основе работы отдельных клеток и их взаимодействий; детальной расшифровке многих до сих пор неизвестных биохимических циклов; анализу их связи с фундаментальными физиологическими процессами.
Таким образом, происходит переход от структурной геномики к функциональной, которая в свою очередь создает предпосылки для исследования молекулярных основ работы клетки и организма в целом.
Накопленная уже сейчас информация будет предметом анализа в течение нескольких ближайших десятилетий. Но каждый следующий шаг в направлении расшифровки структуры геномов разных видов, порождает новые технологии, облегчающие процесс получения информации. Так, использование данных о структуре и функции генов более низко организованных видов живых существ может значительно ускорить поиск специфических генов высших. И уже сейчас методы компьютерного анализа, используемые для идентификации новых генов, зачастую вытесняют достаточно трудоемкие молекулярные методы поиска генов.
Наиболее важным следствием расшифровки структуры генома определенного вида является возможность идентификации всех его генов и, соответственно, идентификации и определения молекулярной природы транскрибируемых молекул РНК и всех его белков. По аналогии с геномом родились понятия
транскриптома
, объединяющего пул образовавшихся в результате транскрипции молекул РНК, и
протеома
, включающего множество кодируемых генами белков. Таким образом, геномика создает фундамент для интенсивного развития новых наук –
протеомики
и
транскриптомики
. Протеомика занимается изучением структуры и функции каждого белка; анализом белкового состава клетки; определением молекулярных основ функционирования отдельной клетки, являющегося

результатом координированной работы многих сотен белков, и исследованием формирования фенотипического признака организма, являющегося результатом координированной работы миллиардов клеток.
Очень важные биологические процессы происходят и на уровне РНК. Их анализ является предметом транскриптомики.
Наибольшие усилия ученых многих стран мира, работающих в области геномики, были направлены на решение международного проекта «Геном человека». Значительный прогресс в этой области связан с реализацией идеи, предложенной Дж. С. Вентером, заняться поиском и анализом экспрессирующихся последовательностей ДНК, которые в дальнейшем могут быть использованы в качестве своеобразных «ярлыков» или маркеров определенных участков генома. Другой независимый и не менее плодотворный подход, был использован в работе группы, возглавляемой Фр.
Коллинзом. Он основан на первоочередной идентификации генов наследственных болезней человека.
Расшифровка структуры генома человека привела к сенсационному открытию. Оказалось, что в геноме человека только 32 000 генов, что в несколько раз меньше количества белков. При этом белок-кодирующих генов только 24 000, продуктами остальных генов являются молекулы РНК.
Процент сходства по нуклеотидным последовательностям ДНК между разными индивидуумами, этническими группами и расами составляет 99,9%.
Это сходство и делает нас людьми – Homo sapiens! Вся наша изменчивость на нуклеотидном уровне укладывается в очень скромную цифру – 0,1%.
Таким образом, генетика не оставляет места для идей национального или расового превосходства.
Но, посмотрим друг на друга – мы все разные. Еще более заметны национальные, а тем более, расовые различия. Так какое же количество мутаций определяют изменчивость человека не в процентном, а в абсолютном выражении? Для того чтобы получить эту оценку, нужно вспомнить, каков размер генома. Длина молекулы ДНК человека составляет

3,2х10 9
пар оснований. 0,1% от этого – 3,2 миллиона нуклеотидов. Но вспомним, что кодирующая часть генома занимает менее 3% от общей длины молекулы ДНК, а мутации вне этой области, чаще всего, не оказывают никакого влияния на фенотипическую изменчивость. Таким образом, для получения интегральной оценки числа мутаций, оказывающих влияние на фенотип, нужно взять 3% от 3,2 миллионов нуклеотидов, что и даст нам цифру порядка 100 000. То есть, около 100 тысяч мутаций формируют нашу фенотипическую изменчивость. Если мы сопоставим эту цифру с общим числом генов, то получится, что в среднем на ген приходится 3-4 мутации.
Что это за мутации? Их подавляющее большинство (не менее 70%) определяет нашу индивидуальную непатологическую изменчивость, то, что нас отличает, но не делает хуже по отношению друг к другу. Сюда входят такие признаки, как цвет глаз, волос, кожи, характер телосложения, рост, вес, тип поведения, который тоже в значительной степени генетически детерминирован, и многое другое. Около 5% мутаций ассоциированы с моногенными заболевания. Около четверти оставшихся мутаций относятся к классу функциональных полиморфизмов. Они участвуют в формировании наследственной предрасположенности к широко распространенной мультифакториальной патологии. Конечно, эти оценки достаточно грубые, но они позволяют судить о структуре наследственной изменчивости человека.
1   ...   4   5   6   7   8   9   10   11   ...   24