Файл: Лекция 1 введение. Теоретические, научные основы безопасности жизнедеятельности. Предмет, цели и задачи дисциплины.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 356
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
не обладающих однонаправленным действием на организм человека, необходимый воздухообмен принимают по наибольшему количеству воздуха, полученному в расчетах для каждого вредного вещества.
При одновременном выделении в воздух рабочей зоны нескольких вредных веществ однонаправленного действия (триоксид серы и диоксид серы; оксиды азота совместно с оксидом углерода и др.) расчет общеобменной вентиляции надлежит производить путем суммирования объемов воздуха, необходимых для разбавления каждого вещества в отдельности до его условных предельно допустимых концентраций.
С помощью местной вентиляциинеобходимые метеорологические параметры создаются на отдельных рабочих местах.
Широкое распространение находит местная вытяжная локализующая вентиляция, основанная на использовании отсосов от укрытий.
Конструкции местных отсосов могут быть полностью закрытыми, полуоткрытыми или открытыми (рисунок 1.4). Наиболее эффективны закрытые отсосы. К ним относятся кожухи, камеры, герметично или плотно укрывающие технологическое оборудование (рисунок 1.4). Если такие укрытия устроить невозможно, то применяют отсосы с частичным укрытием или открытые: вытяжные зонты, отсасывающие панели, вытяжные шкафы, бортовые отсосы и др.
Один из самых простых видов местных отсосов - вытяжной зонт(см. рисунок 1.4). Он служит для улавливания вредных веществ, имеющих меньшую плотность, чем окружающий воздух. Зонты устанавливают над ваннами различного назначения, электро- и индукционными печами и над отверстиями для выпуска металла и шлака из вагранок.
Рисунок 1.4 – Устройства местной вентиляции:
а - укрытие-боос; б - бордовые отсосы (1 – однобортовый; 2 - двухбортовый); в - боковые отсосы (1 - односторонний; 2 - угловой); г - отсос от рабочих столов; д - отсос витражного типа; е - вытяжные шкафы (1 - с верхним отсосом; 2-енижним отсосом; 3 - с комбинированным отсосом); ж — вытяжные шкафы (1 - прямой; 2 -наклонный)
Зонты делают открытыми со всех сторон и частично открытыми: с одной, двух и трех сторон. Эффективность работы вытяжного зонта
зависит от размеров, высоты подвеса и угла его раскрытия. Чем больше размеры и чем ниже установлен зонт над местом выделения веществ, тем он эффективнее. Наиболее равномерное всасывание обеспечивается при угле раскрытия зонта менее 60°.
Отсасывающие панелиприменяют для удаления вредных выделений, увлекаемых конвективными токами, при таких ручных операциях, как электросварка, пайка, газовая сварка, резка металла и т. п.
Вытяжные шкафы - наиболее эффективное устройство по сравнению с другими отсосами, так как почти полностью укрывают источник выделения вредных веществ. Незакрытыми в шкафах остаются лишь проемы для обслуживания, через которые воздух из помещения поступает в шкаф. Форму проема выбирают в зависимости от характера технологических операций.
Необходимый воздухообмен в устройствах местной вытяжной вентиляции рассчитывают, исходя из условия локализации примесей, выделяющихся из источника образования. Требуемый часовой объем отсасываемого воздуха определяют как произведение площади приемных отверстий отсоса на скорость воздуха в них. Скорость воздуха в проеме отсоса зависит от класса опасности вещества и типа воздухо-приемника местной вентиляции и изменяется от 0,5 до 5 м/с.
Смешанная система вентиляцииявляется сочетанием элементов местной и общеобменной вентиляции. Местная система удаляет вредные вещества из кожухов и укрытий машин. Однако часть вредных веществ через неплотности укрытий проникает в помещение. Эта часть удаляется общеобменной вентиляцией.
Аварийная вентиляцияпредусматривается в тех производственных помещениях, в которых возможно внезапное поступление в воздух большего количества вредных или взрывоопасных веществ.
2. Кондиционирование воздуха
Для создания оптимальных метеорологических условий в производственных и жилых помещениях, в салонах транспортных систем применяют наиболее совершенный вид вентиляции - кондиционирование воздуха.
Кондиционированием воздуха называется его автоматическая обработка с целью поддержания в помещениях заранее заданных метеорологических условий независимо от изменения наружных условий и режимов внутри помещения.
При кондиционировании автоматически регулируется температура воздуха, его относительная влажность и скорость подачи в
помещение в зависимости от времени года, наружных метеорологических условий и характера технологического процесса в помещении. Такие параметры воздуха создаются в специальных установках, называемых кондиционерами. В ряде случаев помимо обеспечения санитарных норм микроклимата воздуха в кондиционерах производят специальную обработку: ионизацию, дезодорацию, озонирование и т. п.
Кондиционеры могут быть местными (для обслуживания отдельных помещений) и центральными (для обслуживания нескольких отдельных помещений). Принципиальная схема кондиционера представлена на рисунке 2.1. Наружный воздух очищается от пыли в фильтре 2 и поступает в камеру I, где он смешивается с воздухом из помещения (при рециркуляции). Пройдя через ступень предварительной температурной обработки 4, воздух поступает в камеру II, где он проходит специальную обработку (промывку воздуха водой, обеспечивающую заданные параметры относительной влажности, и очистку воздуха), и в камеру III (температурная обработка). При температурной обработке зимой воздух подогревается частично за счет температуры воды, поступающей в форсунки 5, и частично, проходя через калориферы 4 и 7. Летом воздух охлаждается частично подачей в камеру II охлажденной - (артезианской) воды, и главным образом в итоге работы специальных холодильных машин.
Кондиционирование воздуха играет существенную роль не только с точки зрения безопасности жизнедеятельности, но и во многих технологических процессах, при которых не допускаются колебания температуры и влажности воздуха (особенно в радиоэлектронике). Поэтому установки кондиционирования в последние годы находят все более широкое применение на промышленных предприятиях.
Рисунок 2.1 - Схемы кондиционера:
1 - заборный воздуховод; 2 -фильтр; 3 -соединительный воздуховод; 4 - колорифер; 5 -форсунки воздухоочистки; 6 - каплеуловиталь; 7 - калорифер второй ступени;
8 -вентилятор; 9 - отводной воздуховод.
3. Контроль показателей микроклимата
Измерения показателей микроклимата проводят в рабочей зоне на высоте 1,5 м от пола, повторяя их в различное время дня и года, в разные периоды технологического процесса.
Измеряют температуру, относительную влажность и скорость движения воздуха.
Для измерения температуры и относительной влажности воздуха используют аспирационный психрометр Асмана (рисунок 4.1).
Он состоит из двух термометров 2. У одного из них ртутный резервуар покрыт тканью, которую увлажняют с помощью пипетки 5. Сухой термометр показывает температуру воздуха. Показания влажного термометра зависят от относительной влажности воздуха: температура его тем меньше, чем ниже относительная влажность, поскольку с уменьшением влажности возрастает скорость испарения воды с увлажненной ткани и поверхность резервуара охлаждается более интенсивно.
Чтобы исключить влияние подвижности воздуха в помещении на показания влажного термометра (движение воздуха повышает скорость испарения воды с поверхности увлажненной ткани, что ведет к дополнительному охлаждению ртутного баллона с соответствующим занижением измеряемой величины влажности по сравнению с ее истинным значением) оба термометра помещены в металлические защитные трубки 1. С целью повышения точности и стабильности показаний прибора в процессе измерения температуры сухим и влажным термометрами через обе трубки пропускаются постоянные потоки воздуха, создаваемые вентилятором, размещенным в верхней части прибора 3.
Рисунок 4.1 – Психрометр Асмана:
1 – металлическая трубка, в которой помещаются резервуары термометров;
2 – термометры; 3 – аспиратор; 4 – предохранитель от ветра; 5 – пипетка для смачивания влажного термометра.
Перед измерением в специальную пипетку набирают воду и увлажняют ее тканевую оболочку влажного термометра. При этом прибор держат вертикально, затем взводят часовой механизм и устанавливают (подвешивают или удерживают в руке) в точке измерения.
Через 3...5 мин показания сухого и влажного термометров устанавливаются на определенных уровнях, по которым с помощью специальных таблиц рассчитывается относительная влажность воздуха.
Скорость движения воздуха измеряется с помощью анемометров (рисунок 4.2).
При скорости движения воздуха свыше 1 м/с используют крыльчатые или чашечные анемометры, при меньших скоростях - термоанемометры.
б)
Рисунок 4.2 – Анемометры:
а – крыльчатый; б – чашечный.
Принцип действия крыльчатого и чашечного анемометров - механический.
Под воздействием аэродинамической силы движущегося потока воздуха ротор прибора с закрепленными на нем крыльями (пластинками) начинает вращаться со скоростью, величина которой соответствует скорости набегающего потока. Через систему зубчатых колес ось соединена с подвижными стрелками. Центральная стрелка показывает единицы и десятки, стрелки мелких циферблатов - сотни и тысячи делений. С помощью расположенного сбоку рычага можно отключить ось от механизма зубчатых колес или подключить ее.
Перед измерением записывают показания циферблатов при отключенной оси. Прибор устанавливают в точке измерения, и ось с закрепленными на ней крыльями начинает вращаться. По секундомеру засекают время и включают прибор.
Через 1 мин движением рычага ось отключают и снова записывают показания. Разность показаний прибора делят на 60 (число секунд в минуте) для определения скорости вращения стрелки - количества проходимых ею делений за 1 с. По найденной величине с помощью прилагаемого к прибору графика определяют скорость движения воздуха в секунду.
Для измерения малых скоростей движения воздуха используют термоанемометр, который позволяет также определять температуру воздуха.
Принцип измерения основан на изменении электрического сопротивления чувствительного элемента прибора при изменении
При одновременном выделении в воздух рабочей зоны нескольких вредных веществ однонаправленного действия (триоксид серы и диоксид серы; оксиды азота совместно с оксидом углерода и др.) расчет общеобменной вентиляции надлежит производить путем суммирования объемов воздуха, необходимых для разбавления каждого вещества в отдельности до его условных предельно допустимых концентраций.
С помощью местной вентиляциинеобходимые метеорологические параметры создаются на отдельных рабочих местах.
Широкое распространение находит местная вытяжная локализующая вентиляция, основанная на использовании отсосов от укрытий.
Конструкции местных отсосов могут быть полностью закрытыми, полуоткрытыми или открытыми (рисунок 1.4). Наиболее эффективны закрытые отсосы. К ним относятся кожухи, камеры, герметично или плотно укрывающие технологическое оборудование (рисунок 1.4). Если такие укрытия устроить невозможно, то применяют отсосы с частичным укрытием или открытые: вытяжные зонты, отсасывающие панели, вытяжные шкафы, бортовые отсосы и др.
Один из самых простых видов местных отсосов - вытяжной зонт(см. рисунок 1.4). Он служит для улавливания вредных веществ, имеющих меньшую плотность, чем окружающий воздух. Зонты устанавливают над ваннами различного назначения, электро- и индукционными печами и над отверстиями для выпуска металла и шлака из вагранок.
Рисунок 1.4 – Устройства местной вентиляции:
а - укрытие-боос; б - бордовые отсосы (1 – однобортовый; 2 - двухбортовый); в - боковые отсосы (1 - односторонний; 2 - угловой); г - отсос от рабочих столов; д - отсос витражного типа; е - вытяжные шкафы (1 - с верхним отсосом; 2-енижним отсосом; 3 - с комбинированным отсосом); ж — вытяжные шкафы (1 - прямой; 2 -наклонный)
Зонты делают открытыми со всех сторон и частично открытыми: с одной, двух и трех сторон. Эффективность работы вытяжного зонта
зависит от размеров, высоты подвеса и угла его раскрытия. Чем больше размеры и чем ниже установлен зонт над местом выделения веществ, тем он эффективнее. Наиболее равномерное всасывание обеспечивается при угле раскрытия зонта менее 60°.
Отсасывающие панелиприменяют для удаления вредных выделений, увлекаемых конвективными токами, при таких ручных операциях, как электросварка, пайка, газовая сварка, резка металла и т. п.
Вытяжные шкафы - наиболее эффективное устройство по сравнению с другими отсосами, так как почти полностью укрывают источник выделения вредных веществ. Незакрытыми в шкафах остаются лишь проемы для обслуживания, через которые воздух из помещения поступает в шкаф. Форму проема выбирают в зависимости от характера технологических операций.
Необходимый воздухообмен в устройствах местной вытяжной вентиляции рассчитывают, исходя из условия локализации примесей, выделяющихся из источника образования. Требуемый часовой объем отсасываемого воздуха определяют как произведение площади приемных отверстий отсоса на скорость воздуха в них. Скорость воздуха в проеме отсоса зависит от класса опасности вещества и типа воздухо-приемника местной вентиляции и изменяется от 0,5 до 5 м/с.
Смешанная система вентиляцииявляется сочетанием элементов местной и общеобменной вентиляции. Местная система удаляет вредные вещества из кожухов и укрытий машин. Однако часть вредных веществ через неплотности укрытий проникает в помещение. Эта часть удаляется общеобменной вентиляцией.
Аварийная вентиляцияпредусматривается в тех производственных помещениях, в которых возможно внезапное поступление в воздух большего количества вредных или взрывоопасных веществ.
2. Кондиционирование воздуха
Для создания оптимальных метеорологических условий в производственных и жилых помещениях, в салонах транспортных систем применяют наиболее совершенный вид вентиляции - кондиционирование воздуха.
Кондиционированием воздуха называется его автоматическая обработка с целью поддержания в помещениях заранее заданных метеорологических условий независимо от изменения наружных условий и режимов внутри помещения.
При кондиционировании автоматически регулируется температура воздуха, его относительная влажность и скорость подачи в
помещение в зависимости от времени года, наружных метеорологических условий и характера технологического процесса в помещении. Такие параметры воздуха создаются в специальных установках, называемых кондиционерами. В ряде случаев помимо обеспечения санитарных норм микроклимата воздуха в кондиционерах производят специальную обработку: ионизацию, дезодорацию, озонирование и т. п.
Кондиционеры могут быть местными (для обслуживания отдельных помещений) и центральными (для обслуживания нескольких отдельных помещений). Принципиальная схема кондиционера представлена на рисунке 2.1. Наружный воздух очищается от пыли в фильтре 2 и поступает в камеру I, где он смешивается с воздухом из помещения (при рециркуляции). Пройдя через ступень предварительной температурной обработки 4, воздух поступает в камеру II, где он проходит специальную обработку (промывку воздуха водой, обеспечивающую заданные параметры относительной влажности, и очистку воздуха), и в камеру III (температурная обработка). При температурной обработке зимой воздух подогревается частично за счет температуры воды, поступающей в форсунки 5, и частично, проходя через калориферы 4 и 7. Летом воздух охлаждается частично подачей в камеру II охлажденной - (артезианской) воды, и главным образом в итоге работы специальных холодильных машин.
Кондиционирование воздуха играет существенную роль не только с точки зрения безопасности жизнедеятельности, но и во многих технологических процессах, при которых не допускаются колебания температуры и влажности воздуха (особенно в радиоэлектронике). Поэтому установки кондиционирования в последние годы находят все более широкое применение на промышленных предприятиях.
Рисунок 2.1 - Схемы кондиционера:
1 - заборный воздуховод; 2 -фильтр; 3 -соединительный воздуховод; 4 - колорифер; 5 -форсунки воздухоочистки; 6 - каплеуловиталь; 7 - калорифер второй ступени;
8 -вентилятор; 9 - отводной воздуховод.
3. Контроль показателей микроклимата
Измерения показателей микроклимата проводят в рабочей зоне на высоте 1,5 м от пола, повторяя их в различное время дня и года, в разные периоды технологического процесса.
Измеряют температуру, относительную влажность и скорость движения воздуха.
Для измерения температуры и относительной влажности воздуха используют аспирационный психрометр Асмана (рисунок 4.1).
Он состоит из двух термометров 2. У одного из них ртутный резервуар покрыт тканью, которую увлажняют с помощью пипетки 5. Сухой термометр показывает температуру воздуха. Показания влажного термометра зависят от относительной влажности воздуха: температура его тем меньше, чем ниже относительная влажность, поскольку с уменьшением влажности возрастает скорость испарения воды с увлажненной ткани и поверхность резервуара охлаждается более интенсивно.
Чтобы исключить влияние подвижности воздуха в помещении на показания влажного термометра (движение воздуха повышает скорость испарения воды с поверхности увлажненной ткани, что ведет к дополнительному охлаждению ртутного баллона с соответствующим занижением измеряемой величины влажности по сравнению с ее истинным значением) оба термометра помещены в металлические защитные трубки 1. С целью повышения точности и стабильности показаний прибора в процессе измерения температуры сухим и влажным термометрами через обе трубки пропускаются постоянные потоки воздуха, создаваемые вентилятором, размещенным в верхней части прибора 3.
Рисунок 4.1 – Психрометр Асмана:
1 – металлическая трубка, в которой помещаются резервуары термометров;
2 – термометры; 3 – аспиратор; 4 – предохранитель от ветра; 5 – пипетка для смачивания влажного термометра.
Перед измерением в специальную пипетку набирают воду и увлажняют ее тканевую оболочку влажного термометра. При этом прибор держат вертикально, затем взводят часовой механизм и устанавливают (подвешивают или удерживают в руке) в точке измерения.
Через 3...5 мин показания сухого и влажного термометров устанавливаются на определенных уровнях, по которым с помощью специальных таблиц рассчитывается относительная влажность воздуха.
Скорость движения воздуха измеряется с помощью анемометров (рисунок 4.2).
При скорости движения воздуха свыше 1 м/с используют крыльчатые или чашечные анемометры, при меньших скоростях - термоанемометры.
б)
Рисунок 4.2 – Анемометры:
а – крыльчатый; б – чашечный.
Принцип действия крыльчатого и чашечного анемометров - механический.
Под воздействием аэродинамической силы движущегося потока воздуха ротор прибора с закрепленными на нем крыльями (пластинками) начинает вращаться со скоростью, величина которой соответствует скорости набегающего потока. Через систему зубчатых колес ось соединена с подвижными стрелками. Центральная стрелка показывает единицы и десятки, стрелки мелких циферблатов - сотни и тысячи делений. С помощью расположенного сбоку рычага можно отключить ось от механизма зубчатых колес или подключить ее.
Перед измерением записывают показания циферблатов при отключенной оси. Прибор устанавливают в точке измерения, и ось с закрепленными на ней крыльями начинает вращаться. По секундомеру засекают время и включают прибор.
Через 1 мин движением рычага ось отключают и снова записывают показания. Разность показаний прибора делят на 60 (число секунд в минуте) для определения скорости вращения стрелки - количества проходимых ею делений за 1 с. По найденной величине с помощью прилагаемого к прибору графика определяют скорость движения воздуха в секунду.
Для измерения малых скоростей движения воздуха используют термоанемометр, который позволяет также определять температуру воздуха.
Принцип измерения основан на изменении электрического сопротивления чувствительного элемента прибора при изменении