ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 355

Скачиваний: 19

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Цель: формирование умений проводить анализ содержания обучения, разрабатывать предложения по его совершенствованию; использовать различные средства организации учебной деятельности учащихся.

Изучение смысла арифметических действий является основным, базовым умением, которое приобретается в процессе обучения математике. Смысл арифметических действий подготавливается с начала курса математики практическими упражнениями в объединении двух множеств, в установлении связей между элементами двух множеств, в определении части множества представленных предметов. Все четыре основных арифметических действия в представлении учащихся имеют непосредственную связь с практическими задачами, в которых они применяются. Смысл действий сложения и вычитания, умножения и деления раскрывается на основе практических действий со множествами предметов и в системе текстовых задач. Определяя по двум числам третье, соответствующее заданным условиям, учащийся выполняет математическое действие. Современные системы обучения математике опираются на теоретико-множественный подход при раскрытии и формировании смысла арифметических действий. Среди задач общего образования, школьного математического образования, следует отметить задачу развития учащихся. Процесс мышления детей, переход от практических операций к абстрактным, логическим действиям с числами и понятиями эффективнее всего развивается в курсе изучения математики.

Вычислительное умение – это развернутое осуществление действия, в котором каждая операция осознается и контролируется.

Вычислительное умение предполагает усвоение вычислительного приема. Любой вычислительный прием можно представить в виде последовательности операций, выполнение каждой из которых связано с определенным математическим понятием или свойством.

В отличие от умения навыки характеризуются свернутым, в значительной мере автоматизированным выполнением действия, с пропуском промежуточных операций, когда контроль переносится на конечный результат.

Вычислительный навык – это высокая степень овладения вычислительным приемом. Вычислительный навык складывается из следующих характеристик:

Правильность– ученик правильно находит результат арифметического действия над данными числами, т.е. правильно выбирает и выполняет операции, составляющие прием.


Осознанность – ученик осознает, на основе каких свойств арифметических действий выбраны операции вычислительного приема и почему именно такой порядок их выполнения.

Рациональность – ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием. Это качество навыка проявляется тогда, когда для данного случая существуют различные приемы нахождения результата.

Обобщенность – ученик может применить вычислительный прием к большому числу случаев и способен перенести умение выполнять этот прием на новые случаи.

Автоматизм (свернутость)– ученик может выполнять операции достаточно быстро и свернуто, однако в случае необходимости всегда может вернуться к объяснению выбора системы операций.

Прочность – ученик сохраняет сформированный вычислительный навык достаточно долго.

Рассмотрим основные вопросы методики формирования вычислительных навыков в начальной школе.

Общая схема изучения вычислительного приема:

1. изучается математическое правило, которое является теоретической основой приема;

2. изучается сам вычислительный прием, который выполняется на основе правила.

В методике работы над каждым отдельным приемом можно выделить ряд этапов.

Этапы формирования вычислительного навыка:

1. подготовка к введению нового приема

На этом этапе готовность к усвоению нового вычислительного приема: изучаются теоретические положения, на которых базируется прием, повторяются или изучаются отдельные операции, которые входят в вычислительный прием.

2. ознакомление с вычислительным приемом

На этом этапе ученики усваивают суть приема: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия.

Выделяют такие формы интерпретации приема, как:

а) материальная (представление данного приема в виде каких-либо материальных объектов: абак, палочки и т.д.)

б) перцептивная (создание зрительного восприятия)

В результате интерпретации вычислительного приема в материальной и перцептивной формах вырабатывается ориентировочная основа действия.

в) внешнеречевая форма сначала связана с перцептивной: предлагается развернутая запись всех операций (выполнение каждой операции сопровождается подробными пояснениями).



3. Закрепление знания вычислительного приема и выработка вычислительного навыка.

Выделяют 4 стадии:

1 стадия. Закрепляется знание приема: ученики самостоятельно выполняют операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись. Начинается эта стадия, как правило, на том же уроке, на котором учитель знакомит с новым приемом.

2 стадия. Частичное свертывание выполнения операций: учащиеся вслух выделяют только основные операции, а вспомогательные операции (какие-то промежуточные вычисления) выполняют «про себя», что способствует их свертыванию, т.е. быстрому выполнению в плане внутренней речи.

3 стадия (внутриречевая). Полное свертывание выполнения операций: учащиеся называют только конечный результат, а все операции выполняются «про себя».

4 стадия. Предельное свертывание выполнения операций: учащиеся выполняют все операции в свернутом плане, предельно быстро, без проговаривания, т. е. они овладевают вычислительным навыком. Это достигается в результате выполнения достаточного числа тренировочных упражнений.

В случае затруднения при выполнении арифметических действий учитель должен вернуться к любому из этапов формирования навыка, к любой форме, любой стадии с учетом индивидуальных особенностей ребенка.

Задание 5.Выполните сравнительный анализ обучения табличному сложению и вычитанию по различным вариативным программам (УМК по выбору). Результаты сравнения оформите в виде таблицы 4.

 

Таблица 4. – Сравнительный анализ обучения табличному сложению и вычитанию по различным вариативным программам

 


№ п/п


Название программы, УМК


Особенности изучения табличного сложения и вычитания


Преимущества данного методического подхода


Недостатки использованного методического подхода


1.1.


УМК «Школа России» Авторы

М. И.Моро М. А. Бантова,  Г. В. Бельтюкова, С.И.Волкова, С.В.Степанова 


Всего на нее отводится 78 учебных часов («Сложение и вычитания». Числа от 1 до 10»- 56ч., «Сложение и вычитание. Числа от 1 до 20 - 22ч). В 1 части учебника учащиеся научатся прибавлять и вычитать числа 1,2,3. Во второй части научатся выполнять сложение применяя переместительное свойство сложения; выполнять на основе связи сложения и вычитания вычисления вида: 5+4=9, 9- 5=4, 9-4=5. Задания, которые даны в основном с иллюстрациями для наглядности, так же изображение линейки для вычислений, заполнение таблицы сложении.

Во второй части учебника 1 класса есть отдельные темы «Таблица сложения». 


Материал учебника позволяет организовать дифференцированное обучении и обеспечивает достижение личностных, предметных и метапредметных результатов освоения Основной образовательной программы начального общего образования. Система заданий обеспечивает формирование навыка решения учебно-практических задач и развитие у обучающихся функциональной грамотности.

Учебник подготовлен в соответствии с требованиями Федерального государственного образовательного стандарта начального общего образования. 


Я считаю, что данный учебник имеет усовершенствованный методический подход, который позволяет полноценно изучить данную тему. 


2 2.


УМК «Школа 2100» авторы А.А.Леонтьев, Д.И.Фельдштейн, С.К.Бондырева, Ш.А.Амонашвили.


На табличные случаи сложения и вычитания отводится 23 часа. в учебнике первого класса 2 части есть отдельная тема «Таблица сложения». Так же в учебнике присутствует как фронтальная, индивидуальная, так и групповая (парная). Предлагаемое содержание курса математики: обеспечивает требуемый уровень подготовки школьников, предусматриваемый стандартом математического образования;

позволяет осуществить такую подготовку, которая является не только необходимой, но и достаточной для углубленного изучения математики.  


 Курс построен по спирали и направлен на формирование системы математических понятий и общих способов деятельности. Каждая тема на новом витке спирали позволяет осуществить повторение ранее изученного на более высоком уровне, устанавливая причинно-следственные связи, находя общее между объектами и явлениями, ранее казавшимися далекими друг от друга, выявляя различия между объектами и явлениями, ранее казавшимися сходными.


В отличие от предыдущей образовательной системе, в данной скудно представлено моделирование. 


3 3.


УМК «Школа 2000» Л. Г. Петерсон. 


На изучение темы отведено 26 учебных часов. Так же в комплекте часто используемый прием это моделирование. Задания отличаются от заданий, которые даны в других учебно-методических комплексах. Задания с повышенной сложностью отсутствует. При изучении новой, для обучающихся темы, в учебнике предлагается только либо фронтальная, либо индивидуальная форма работы, то есть групповая отсутствует 


Педагогическим инструментом реализации поставленных целей в курсе математики является дидактическая система деятельностного метода «Школа 2000...». Суть её заключается в том, что учащиеся не получают знания в готовом виде, а добывают их сами в процессе собственной учебной деятельности. В результате школьники приобретают личный опыт математической деятельности и осваивают систему знаний по математике, лежащих в основе современной научной картины мира. Но главное, они 20 осваивают весь комплекс универсальных учебных действий (УУД), определённых ФГОС, и умение учиться в целом. Основой организации образовательного процесса в дидактической системе «Школа 2000...» является технология деятельностного метода (ТДМ), которая помогает учителю включить учащихся в самостоятельную учебнопознавательную деятельность. 


Я считаю, что данная программа достаточно продумана и является многофункциональной, из недостатков лишь то, что на изучение темы дается небольшое количество часов. Думаю, было бы целесообразно добавить еще часов. 


4 4.


УМК «Перспектива» авторы Г.В.Дорофеев, Т.Н.Миракова 


 На изучение раздела «Числа от 1 до 10. Число 0. Сложение и вычитание» отводится 58 часов, а на «Числа от 11 до 20. Сложение и вычитание» уже меньше, 26 учебных часов.

Осваивая данный курс математики, младшие школьники учатся моделировать ситуации, иллюстрирующие арифметическое действие и ход его выполнения. Для этого в курсе предусмотрены вычисления на числовом отрезке, что способствует усвоению состава числа, выработке навыков счета группами, формированию навыка производить вычисления осознанно


 При изучении новой, для обучающихся темы, в учебнике предлагается только либо фронтальная, либо индивидуальная форма работы.

Освоение содержания данного курса побуждает младших школьников использовать не только собственный опыт, но и воображение: от фактического опыта и эксперимента – к активному самостоятельному мысленному эксперименту с образом, являющемуся важным элементом творческого подхода к решению математических проблем. Кроме того, у учащихся формируется устойчивое внимание, умение сосредотачиваться.


Задания с повышенной сложностью отсутствует.

Групповая формы работы отсутствуют.

 



Задание 6. Разработайте три ситуации с интересными сюжетами на все виды предметных действий, которые можно использовать для формирования у учащихся представлений о смысле сложения и вычитания.
ОТВЕТ: для разъяснения действия сложения используются предмет­ные, вербальные, графические и символические модели, между которыми устанав­ливается соответствие.

1. Например, детям предлагается картинка, на которой Миша и Маша запускают рыбок в один аквариум, и дается задание: «Расскажи, что делают Миша и Маша». Организуя деятельность учащихся с этой картинкой, педагог ориентируется на такую последовательность в работе: дети разглядывают картинку, которая служит предметной моделью. Выполняют задание, выражая свои наблюдения в словах (вербальная мо­дель, соответствующая картинке)

Ответы учеников обычно выглядят так: «Запускают рыбок в один аквариум; за­пускают рыбок вместе в аквариум, объединяют рыбок; Миша запускает в аквариум 2 рыбок, Маша - 3». Ответы могут быть разными, важно, чтобы класс обратил внимание на то, сколько рыбок запускает в аквариум Миша, а сколько Маша, и что рыбки Миши и Маши объединяются вместе в одном аквариуме. Затем учитель обращает внимание первоклассников на записи под картин­ками (это числовые выражения) и предлагает им найти ту запись, которая, по их мнению, подойдет к картинке. Анализируя выражения и ориентируясь на числа, имеющиеся в них, дети находят подходящие (2+3 и 3+2).

Выясняется, чем похожи эти выражения (в каждом два числа и знак «+») и как можно прочитать их по-разному (2 плюс 3, к двум прибавить три, сложить числа 2 и 3). Дети упражняются в чтении выражений.

Помимо выражений к рассматриваемой картинке можно поставить в соот­ветствие определенное число. (Об этом ученики также могут догадаться, пересчи­тав предметы на ней.)

В результате проведенной работы дети записывают равенства, а также знако­мятся с названиями результата сложения и его компонентов.

После этого числовые равенства интерпретируются на числовом луче.

Можно условно выделить три вида ситуаций, связанных с операцией объеди­нения:

а) составление одного предметного множества из двух данных: такая ситуация рассмотрена выше;