Файл: Ответы к экзамену комбинаторный признак умножения. Количество битовых строк длины.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 156

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВОПРОСЫ и ответы К ЭКЗАМЕНУ Комбинаторный признак умножения. Количество битовых строк длины k. Пусть задана последовательность событий E1, E2, E3, …, Em таких, что событие Е1осуществляется n1способами, и если события E1, E2, E3,...,Ек-1осуществились, то событие Ек может осуществиться nкспособами. Тогда существует n1х n2х n3х … х nтспособов осуществления всей последовательности событий.. Битовая строка – это строка, состоящая из элементов множества{0, 1}, т.е. каждый из элементов имеет значение 0 или 1. Сколько существует битовых строк длины 5? Сколько существует битовых строк длины k?Поскольку каждый символ строки может иметь значение 1 или 0, тосуществует два варианта выбора для каждой позиции. Следовательно, существует 2 x 2 x 2 x 2 x 2 = 25 битовых строк длины 5. По аналогичным соображениям, имеется 2k битовых строк длины k. Количество всех подмножеств k - элементного множества. Число всех подмножеств из элементов равно N(M(A))=2^n Комбинаторный признак сложения.  (Комбинаторный принцип сложения) Пусть S1, S 2, S3,... ,Sm – попарно непересекающиеся множества (т.е. SiSj = для всех i  j), и пусть для каждого i, множество Si содержит niэлементов. Количество вариантов вы­бора из S1 или S2или S3 или ... или Smравно n1 + n2 + n3+ … + nm. На языке теории множеств утверждение теоремы имеет вид |S1 S2 S3 ... Sm|= |S1| + |S2| + |S3| + ... + |Sm|, где |S| обозначает количество элементов множества S. Перестановки, размещения, сочетания без повторения. Перестановками -называются наборы состоящие из одного и того элементов,следования элементов. Pn=n!Размещение –называются упорядоченные наборы из элементов выбранных из n элементов, которые отличаются друг от друга, как порядком следования, так и составом элементов. mA =n!/(n-m)!nСочетание- называютсяэлементов выбранных из n элементов, которые отличаются другот друга составом элементов. mС =n!/m!(n-m)!n Бином Ньютона. Треугольник Паскаля. Свойства биномиальных коэффициентов. Формула бинома Ньютонадля натуральныхnимеет вид  , где   -биномиальные коэффициенты, представляющие из себя сочетания изnпоk,k=0,1,2,…,n, а "!" – это знак факториала).К примеру, известная формула сокращенного умножения "квадрат суммы" вида   есть частный случай бинома Ньютона приn=2.Выражение, которое находится в правой части формулы бинома Ньютона, называютразложениемвыражения(a+b)n, а выражение   называют(k+1)-ым членом разложения,k=0,1,2,…,n.Биномиальные коэффициенты для различныхnудобно представлять в виде таблицы, которая называется арифметическийтреугольник Паскаля. В общем виде треугольник Паскаля имеет следующий вид: Треугольник Паскаля чаще встречается в виде значений коэффициентов бинома Ньютона для натуральныхn: Боковые стороны треугольника Паскаля состоят из единиц. Внутри треугольника Паскаля стоят числа, получающиеся сложением двух соответствующих чисел над ним. Например, значение десять (выделено красным) получено как сумма четверки и шестерки (выделены голубым). Это правило справедливо для всех внутренних чисел, составляющих треугольник Паскаля, и объясняется свойствами коэффициентов бинома Ньютона.Для коэффициентов бинома Ньютона справедливы следующие свойства: коэффициенты, равноудаленные от начала и конца разложения, равны между собой  ,p=0,1,2,…,n; ; сумма биномиальных коэффициентов равна числу2, возведенному в степень, равную показателю степени бинома Ньютона:  ; сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах. Первые два свойства являются свойствами числа сочетаний. Перестановки, размещения, сочетания с повторениями. Перестановка – _ Размещение- Сочетание- 7. Признак клеток (Дирихле). Принцип Дирихле — простой, интуитивно понятный и часто полезный метод для доказательства утверждений о конечном множестве. Этот принцип часто используется в дискретной математике, где устанавливает связь между объектами («кроликами») и контейнерами («клетками») при выполнении определённых условий. В английском и некоторых других языках данное утверждение известно как «принцип голубей и ящиков, когда объектами являются голуби, а контейнерами — ящики.Этот принцип утверждает, что если множество из n элементов разбито на m непересекающихся частей, не имеющих общих элементов, гдеn > mто, по крайней мере, в одной части будет более одного элемента.На языке отображений эта формулировка означает, чтоесли в А (множестве предметов) больше элементов, чем в В (множестве ящиков), то не существует обратимого отображения А в В.Другая формулировка “ принципа Дирихле“:если n + 1 предмет поместить в n мест, то обязательно хотя бы в одном месте окажутся хотя бы двапредмета.В шутливой форме принцип Дирихле выглядит так: “нельзя посадить семерых зайцев в три клетки так, чтобы в каждой клетке находилось не больше двух зайцев “. [2] Признак математической индукции. Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному. Определение 2 9. Высказывания. Отрицание, конъюнкция, дизъюнкция, их таблицы истинности.Высказываниемназывается повествовательное предложение, о котором в данной ситуации можно сказать, что оно истинно или ложно, но не то и другое одновременно.Например, «Москва – столица России», «число 2 больше 5» – высказывания. Первое высказывание является истинным, а второе – ложным.Отрицаниемвысказывания  называется высказывание («не », «неверно, что »), которое истинно, когда ложно, и ложно, когда истинно.Таблица истинности для отрицания: Конъюнкцией (логическим умножением) двух высказываний  , называется высказывание (« и »), которое истинно только в том случае, когда и оба истинны.Таблица истинности для конъюнкций: Дизъюнкцией (логическим сложением) двух высказываний  , называется высказывание (« или »), которое истинно, когда хотя бы одно из них истинно.Таблица истинности для дизъюнкций: 10. Импликация и эквиваленция, таблицы их истинности.Импликацией двух высказываний  ,  называется высказывание  («если , то », « влечёт », «из следует », « имплицирует »), которое ложно тогда и только тогда, когда истинно, а ложно.Таблица истинности для импликаций:  Эквивалентностью высказываний  , называется высказывание (« эквивалентно », « тогда и только тогда, когда », «для того, чтобы , необходимо и достаточно, чтобы »), которое истинно тогда и только тогда, когда  и  оба истинны или ложны.Таблица истинности для эквивалентности: 11. Эквивалентные высказывания. Теорема о свойствах логических эквивалентностей.Эквиваленцией (или эквивалентностью) двух высказываний Х, У называется новое высказывание, которое считается истинным, когда оба высказывания Х, У, либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.Эквиваленция высказываний Х, У обозначается символом  (или,

22. Булева алгебра.Булевой алгеброй называется дистрибутивная структура с неравными друг другу единицей 1 и нулем 0, в которой всякий элемент имеет дополнение. Булева алгебра всегда содержит не менее двух элементов. Алгебра, содержащая только 1 и 0, называется вырожденной.23. Основные законы и свойства операций Булевой алгебры.Как любая алгебраическая система булева алгебра базируется на совокупности некоторых предположений, которые принято называть аксиомами, т.е предположениями не требующими доказательств. Аксиомы определяются для двух логических значений 1 ( "ИСТИНА" ) и 0 ( "ЛОЖЬ" ) и операций логического умножения (конъюнкции), которая обозначается " & ", " · " или не обозначается вовсе, логического сложения (дизъюнкции), которая обозначатся " v ", "+", и отрицания ( инверсии ), которая обозначается горизонтальной чертой (" - ") над переменной или выражением, например, . Булевой переменной, обозначаемой обычно xi , называется переменная принимающая два логических значения { 0, 1 }.Ниже приведены аксиомы булевой алгебры относительно дизъюнкции, конъюнкции и отрицания.Аксиомы конъюнкции 0·* 0 = 0 ; 1·* 1 = 1 ; 0·* 1 = 1·* 0 = 0 ;Аксиомы дизъюнкции 0 v 0 = 0 ; 1 v 1 = 1 ; 0 v 1 = 1 v 0 = 1 ;Аксиомы отрицания Если x = 0 , то ˆх = 1 ;Если x = 1 , то ˆх = 0 ;Следующие 5 правил обычно называют теоремами булевой алгебры. Особенностью теорем булевой алгебры является то, что для их доказательства пользуются простой подстановкой значений булевых переменных. Это обусловлено тем, что переменные могут принимать только 2 значения - 0 и 1.Операции с константами : Идемпотентность (тавтология, повторение) :  Для n переменных:  Противоречие :Правило "исключенного третьего" :Двойное отрицание (инволюция) :Следующие 4 правила обычно называют законами или тождествами булевой алгебры.Ассоциативность ( ассоциативный закон ) :   Коммутативность ( коммутативный закон ) :   11. Дистрибутивность ( дистрибутивный закон ) :конъюнкции относительно дизъюнкции: дизъюнкции относительно конъюнкции: 24. Отношения множеств. Область определения и множество значений отношения. Обратное отношение. Область определения отношения R – это подмножество всех элементов х множества Х, для которыхнайдется элемент y, связанный с данным элементом отношением R. Область значения отношения R – подмножество всех элементов y множества У, для которых найдутся элементы x, связанные с y отношением R (). Пример: Если область определения отношения совпадает с некоторым множеством X, то говорят, что отношение определено на X. Итак, если R — отношение на множестве X, то R X X. Множество всех первых элементов пар из R называется областью определения отношения R. Множеством значений отношения R называется множество всех вторых элементов пар из R. Обратное отношение (отношение, обратное к R) — это двухместное отношение, состоящее из пар элементов (у, х), полученных перестановкой пар элементов (х, у) данного отношения R. Обозначается: R−1. Для данного отношения и обратного ему верно равенство: (R−1)−1= R. Взаимо-обратные отношения(взаимообратные отношения) — отношения, являющиеся обратными друг по отношению к другу. Область значений одного из них служит областью определения другого, а область определения первого — областью значений другого. 25. Специальные свойства отношений на А. Частично упорядоченные множества.Бинарным отношением на множестве А называется подмножество его квадрата RÍ A2. Бинарным отношением между множествами А и В называются подмножество принадлежащее декартовому произведению 2-х множеств: RÍ АхВ.Если упорядоченная пара (а1, а2) принадлежит отношению R, то говорят что а1 R а2, то есть между элементом а1 и а2 уст-но отношение R.Областью определения бинарного отношения называется множество элементов а, в котором в принадлежит бинарному отношению: þR={a|bÎ aRb}.Областью значения бинарного отношения называют множество b, в котором а принадлежит бинарному значению:PR={b|aÎ aRb }.Обратное отношение для отношения R называется отношение: R-1={(b,a)|(a,b) Î R }.Отношение можно задать:-с помощью любого способа задания множеств-С помощью матрицы бинарного отношения. Матрица бинарного отношения это квадратная матрица R элементы которой определяются следующим образом rij=1, (ai,aj)Î R, 0 – в противном случае.-С использованием графа. Каждому бинарному отношению можно подставить в соответствие граф G(X,U), содержащий множество вершин Х, и множество ребер U. При этом вершины ajai соединяются дугой если упорядоченная пара ajai Î R. Так как отношения являются множеством упорядоченных пар, то для отношения можно определить те же операции, что и для множеств (объединение, пересечение, разность, дополнение, симметрическая разность).

Взвешенные графы

Ремарка


ВОПРОСЫ и ответы К ЭКЗАМЕНУ


  1. Комбинаторный признак умножения. Количество битовых строк длины k.

Пусть задана последовательность событий E1, E2, E3, …Eтаких, что событие Е1осуществляется n1способами, и если события E1, E2, E3,...,Ек-1осуществились, то событие Ек может осуществиться nкспособами. Тогда существует n1х n2х n3х … х nтспособов осуществления всей последовательности событий.

. Битовая строка это строка, состоящая из элементов множества

{0, 1}, т.е. каждый из элементов имеет значение 0 или 1. Сколько существует битовых строк длины 5? Сколько существует битовых строк длины k?

Поскольку каждый символ строки может иметь значение 1 или 0, то

существует два варианта выбора для каждой позиции. Следовательно, существует 2 x 2 x 2 x 2 x 2 = 25 битовых строк длины 5. По аналогичным соображениям, имеется 2k битовых строк длины k.


  1. Количество всех подмножеств k - элементного множества.

Число всех подмножеств из элементов равно N(M(A))=2^n

  1. Комбинаторный признак сложения.

 (Комбинаторный принцип сложения) Пусть S1, S 2S3,..,Sm – попарно непересекающиеся множества (т.е. SiSj = для всех  j), и пусть для каждого i, множество Si содержит niэлементов. Количество вариантов вы­бора из S1 или S2или S3 или ... или Smравно n1 + n2 + n3+ … + nmНа языке теории множеств утверждение теоремы имеет вид |S1 S2 S3 ... Sm|= |S1| + |S2| + |S3| + ... + |Sm|, где |S| обозначает количество элементов множества S.

  1. Перестановки, размещения, сочетания без повторения.

Перестановками -называются наборы состоящие из одного и того элементов,следования элементов. Pn=n!

Размещение –называются упорядоченные наборы из элементов выбранных из n элементов, которые отличаются друг от друга, как порядком следования, так и составом элементов. m

A =n!/(n-m)!

n

Сочетание- называются

элементов выбранных из n элементов, которые отличаются друг

от друга составом элементов. m

С =n!/m!(n-m)!

n


  1. Бином Ньютона. Треугольник Паскаля. Свойства биномиальных коэффициентов.

Формула бинома Ньютонадля натуральныхnимеет вид  , где   -биномиальные коэффициенты, представляющие из себя сочетания изnпоk,k=0,1,2,…,n, а "!" – это знак факториала).

К примеру, известная формула сокращенного умножения "квадрат суммы" вида   есть частный случай бинома Ньютона приn=2.

Выражение, которое находится в правой части формулы бинома Ньютона, называютразложениемвыражения(a+b)n, а выражение   называют(k+1)-ым членом разложения,k=0,1,2,…,n.

Биномиальные коэффициенты для различныхnудобно представлять в виде таблицы, которая называется арифметическийтреугольник Паскаля. В общем виде треугольник Паскаля имеет следующий вид:


Треугольник Паскаля чаще встречается в виде значений коэффициентов бинома Ньютона для натуральныхn:



Боковые стороны треугольника Паскаля состоят из единиц. Внутри треугольника Паскаля стоят числа, получающиеся сложением двух соответствующих чисел над ним. Например, значение десять (выделено красным) получено как сумма четверки и шестерки (выделены голубым). Это правило справедливо для всех внутренних чисел, составляющих треугольник Паскаля, и объясняется свойствами коэффициентов бинома Ньютона.

Для коэффициентов бинома Ньютона справедливы следующие свойства:

  • коэффициенты, равноудаленные от начала и конца разложения, равны между собой  ,p=0,1,2,…,n;

  • ;

  • сумма биномиальных коэффициентов равна числу2, возведенному в степень, равную показателю степени бинома Ньютона:  ;

  • сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах.

Первые два свойства являются свойствами числа сочетаний.


  1. Перестановки, размещения, сочетания с повторениями.

Перестановка – _

Размещение-




Сочетание-



7. Признак клеток (Дирихле).

Принцип Дирихле — простой, интуитивно понятный и часто полезный метод для доказательства утверждений о конечном множестве. Этот принцип часто используется в дискретной математике, где устанавливает связь между объектами («кроликами») и контейнерами («клетками») при выполнении определённых условий. В английском и некоторых других языках данное утверждение известно как «принцип голубей и ящиков, когда объектами являются голуби, а контейнерами — ящики.

Этот принцип утверждает, что если множество из n элементов разбито на m непересекающихся частей, не имеющих общих элементов, гдеn > mто, по крайней мере, в одной части будет более одного элемента.

На языке отображений эта формулировка означает, чтоесли в А (множестве предметов) больше элементов, чем в В (множестве ящиков), то не существует обратимого отображения А в В.

Другая формулировка “ принципа Дирихле“:если n + 1 предмет поместить в n мест, то обязательно хотя бы в одном месте окажутся хотя бы двапредмета.

В шутливой форме принцип Дирихле выглядит так: “нельзя посадить семерых зайцев в три клетки так, чтобы в каждой клетке находилось не больше двух зайцев “. [2]


  1. Признак математической индукции.

Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному. Определение 2



9. Высказывания. Отрицание, конъюнкция, дизъюнкция, их таблицы истинности.

Высказываниемназывается повествовательное предложение, о котором в данной ситуации можно сказать, что оно истинно или ложно, но не то и другое одновременно.

Например, «Москва – столица России», «число 2 больше 5» – высказывания. Первое высказывание является истинным, а второе – ложным.

Отрицаниемвысказывания  называется высказывание («не », «неверно, что »), которое истинно, когда ложно, и ложно, когда истинно.

Таблица истинности для отрицания:



Конъюнкцией (логическим умножением) двух высказываний  , называется высказывание (« и »), которое истинно только в том случае, когда и оба истинны.

Таблица истинности для конъюнкций:



Дизъюнкцией (логическим сложением) двух высказываний  , называется высказывание (« или »), которое истинно, когда хотя бы одно из них истинно.

Таблица истинности для дизъюнкций:



10. Импликация и эквиваленция, таблицы их истинности.

Импликацией двух высказываний  ,  называется высказывание  («если , то », « влечёт », «из следует », « имплицирует »), которое ложно тогда и только тогда, когда истинно, а ложно.

Таблица истинности для импликаций:



 Эквивалентностью высказываний  , называется высказывание (« эквивалентно », « тогда и только тогда, когда », «для того, чтобы , необходимо и достаточно, чтобы »), которое истинно тогда и только тогда, когда  и  оба истинны или ложны.

Таблица истинности для эквивалентности:


11. Эквивалентные высказывания. Теорема о свойствах логических эквивалентностей.

Эквиваленцией (или эквивалентностью) двух высказываний Х, У называется новое высказывание, которое считается истинным, когда оба высказывания Х, У, либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.

Эквиваленция высказываний Х, У обозначается символом  (или,

), читается «Х эквивалентно У» или « для того, чтобы Х, необходимо и достаточно, чтобы У», или «Х тогда и только тогда, когда У».

12. Тавтологии и противоречия, их свойства.

Формула называется тавтологией, если при любой интепретации она истинна; или противоречием, если при любой интепретации - ложна.

Теорема 3.1. Следующие формулы алгебры высказываний являются тавтологиями:
а) закон исключенного третьего;
б) закон отрицания противоречия;
в) закон двойного отрицания;
г) закон тождества;
д) закон контрапозиции;
е) закон силлогизма (правило цепного заключения);
ж) закон противоположности;
з) правило добавления антецедента ("истина из чего угодно");
и) правило "из ложного что угодно";
к) правило "модус поненс" (лат. modusponens);
л) правило "модус толленс" (лат. modustollens);
м) правило перестановки посылок;
н) правило объединения (и разъединения) посылок;
о) правило разбора случаев;
п) правило приведения к абсурду.

Доказательство. Отметим, что непосредственно из определений логических операций вытекает тождественная истинность формул а), б), в), г); для формулы д) доказательство имеется. Установим тождественную истинность формул л) и н) (для остальных проверьте самостоятельно).

Противоречие, как уже отмечалось, является одним из четырёх основных законов логики.

Причём, из определения закона видно, что в данном формально логическом законе имеется в виду не всякое противоречие. а только один из видов противоречия. а именно, противоречие формально-логическое. У логического противоречия нет точного прототипа в природе и обществе. Поэтому возникающее противоречие в процессе исследования на тавтологию

рассматриваемых в сравнении формул.
13. Умозаключения и правила вывода, доказательство от противного.

Умозаключения, как и понятия и суждения, являются формой аб­страктного мышления. С помощью многообразных видов умозак­лючений опосредованно (т. е. не обращаясь к органам чувств) мы можем получать новые знания. Умозаключать можно при наличии одного или нескольких суждений (называемых посылками), постав­ленных во взаимную связь. Возьмем пример умозаключения:

Все углероды горючи.

Алмаз - углерод.

Алмаз горюч.

Умозаключение - форма мышления, в которой из одного или нескольких суждений на основании определенных правил выво­да получается новое суждение, с необходимостью или опреде­ленной степенью вероятности следующее из них.

Умозаключения делятся на такие виды: дедуктивные, индук­тивные, по аналогии. Умозаключения могут быть логически не­обходимыми, т. е. давать истинное заключение, и вероятностными (правдоподобными), т. е. давать не истинное заключение, а лишь с определенной степенью вероятности следующее из данных посы­лок (при этом в качестве посылок могут быть и ложные суждения).

Схема умозаключения «от противного» такова:«Если из А следует В, то из не В следует не А».Другими словами, если верно АВ, то верно  , и наоборот. Такое умозаключение лежит в основе рассуждения от противного и в математике. Если АВ назватьпрямой теоремой,то ВА называетсяобратной теоремой,а  называетсяпротивоположной к обратной теореме.

Покажем справедливость  , при условии справедливости АВ. Нам нужно доказать, что еслиистинно, то истинно. Другими словами, если В ложно, то А ложно. Но это очевидно, так как истинность А влечет за собой истинностьВ.

14. Полнота в логике высказываний. Штрих Шеффера и стрелка Пирса.

   В исчислении высказываний, кроме явных определений, существуют неявные. К ним относится
стрелка Пирса,
АВ .Это сложное высказывание, которое означает "НиА, ниВ".Например, "
новое здание было ни высоким (
А), ни низким(В)". Это высказывание истинно только тогда, когда ложны
оба высказывания, входящие в это сложное высказывание.


      Таблица истинности сложного высказывания видаАВ
выглядит следующим образом:




 Для сравнения приведём таблицу истинности для дизъюнкции А  В, в котором союз "или" употреблён в соединительно -разделительном смысле.



 Одно из направлений современной неклассической математической логики, в котором не применяется операция отрицания называется "положительная логика". Одной из таких логических построений является логика, построенная с помощью одного функтора логического знака операции) "/" , который называется "штрих Шеффера".

                    Например,А/Возначает: "АиВнесовместны" или "Неверно, чтоА и В". Ещё пример, высказывания "2 х 2 = 4" и "2 х 2 = 5" несовместны.

            Высказывание со штрихом Шеффера истинно тогда и только тогда, когда либоАложно, либоВложно , либоА и Вложны одновременно. Оно ложно и в ом случае, если истинны иАи Водновременно. Действительно, если вместо А подставить высказывание

"2 х 2 = 4" и вместо В подставить высказывание "2 х 2 = 4", тоА/Вдадут ложное высказывание, так как так про идентичные высказывания нельзя сказать, что они несовместны. Таблица истинности со штрихом Шеффера выглядит следующим образом




Как видно из таблицы, операция со знаком "/" является противоположной операции операции со знаком "". Операция истинностного значения сложного высказывания А   В   выглядит так:



 На этом основании всегда можно вывести формулу:А/В   , которая читается так: "НесовместностьА и Вравносильна отрицанию конъюнкцииА и В"

        Сложное высказывание можно выразить и через дизъюнкцию, которая примет следующий вид: А/В    То есть, "несовместность А и В равносильна дизъюнкции отрицаний"

  С помощью штриха Шиффера можно выразить все другие связки исчисления высказываний, что и сделал сам Шиффер. построив всю теорию исчислений высказываний с помощью только одного знака операции. В этой системе действительны следующие равнозначности:

Ā ≡ А / А"ОтрицаниеАравносильно тому, чтоА и Анесовместны"

АВ   " А и Вравносильно операции несовместности"

АВ   "А или Вравносильно тому. что отрицание А и отрицание Внесовместны"

АВ   "ЕслиА имплицирует (влечёт) В.то это равносильно тому. что, чтоА и отрицание Внесовместны".

        Операция штрих Шеффера коммутативна:

А / В≡ В /А

Но операция не подчиняется закону ассоциативности:

А / (В / С) ≠ (А / В) / С

Полнота логических исчислений — выводимость в исчислении (логической системе) всех утверждений (предложений, формуЛит.п.), обладающих некоторым подразумеваемым для этого исчисления свойством. Напр., П. классического исчисления