Файл: Ответы к экзамену комбинаторный признак умножения. Количество битовых строк длины.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 161

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВОПРОСЫ и ответы К ЭКЗАМЕНУ Комбинаторный признак умножения. Количество битовых строк длины k. Пусть задана последовательность событий E1, E2, E3, …, Em таких, что событие Е1осуществляется n1способами, и если события E1, E2, E3,...,Ек-1осуществились, то событие Ек может осуществиться nкспособами. Тогда существует n1х n2х n3х … х nтспособов осуществления всей последовательности событий.. Битовая строка – это строка, состоящая из элементов множества{0, 1}, т.е. каждый из элементов имеет значение 0 или 1. Сколько существует битовых строк длины 5? Сколько существует битовых строк длины k?Поскольку каждый символ строки может иметь значение 1 или 0, тосуществует два варианта выбора для каждой позиции. Следовательно, существует 2 x 2 x 2 x 2 x 2 = 25 битовых строк длины 5. По аналогичным соображениям, имеется 2k битовых строк длины k. Количество всех подмножеств k - элементного множества. Число всех подмножеств из элементов равно N(M(A))=2^n Комбинаторный признак сложения.  (Комбинаторный принцип сложения) Пусть S1, S 2, S3,... ,Sm – попарно непересекающиеся множества (т.е. SiSj = для всех i  j), и пусть для каждого i, множество Si содержит niэлементов. Количество вариантов вы­бора из S1 или S2или S3 или ... или Smравно n1 + n2 + n3+ … + nm. На языке теории множеств утверждение теоремы имеет вид |S1 S2 S3 ... Sm|= |S1| + |S2| + |S3| + ... + |Sm|, где |S| обозначает количество элементов множества S. Перестановки, размещения, сочетания без повторения. Перестановками -называются наборы состоящие из одного и того элементов,следования элементов. Pn=n!Размещение –называются упорядоченные наборы из элементов выбранных из n элементов, которые отличаются друг от друга, как порядком следования, так и составом элементов. mA =n!/(n-m)!nСочетание- называютсяэлементов выбранных из n элементов, которые отличаются другот друга составом элементов. mС =n!/m!(n-m)!n Бином Ньютона. Треугольник Паскаля. Свойства биномиальных коэффициентов. Формула бинома Ньютонадля натуральныхnимеет вид  , где   -биномиальные коэффициенты, представляющие из себя сочетания изnпоk,k=0,1,2,…,n, а "!" – это знак факториала).К примеру, известная формула сокращенного умножения "квадрат суммы" вида   есть частный случай бинома Ньютона приn=2.Выражение, которое находится в правой части формулы бинома Ньютона, называютразложениемвыражения(a+b)n, а выражение   называют(k+1)-ым членом разложения,k=0,1,2,…,n.Биномиальные коэффициенты для различныхnудобно представлять в виде таблицы, которая называется арифметическийтреугольник Паскаля. В общем виде треугольник Паскаля имеет следующий вид: Треугольник Паскаля чаще встречается в виде значений коэффициентов бинома Ньютона для натуральныхn: Боковые стороны треугольника Паскаля состоят из единиц. Внутри треугольника Паскаля стоят числа, получающиеся сложением двух соответствующих чисел над ним. Например, значение десять (выделено красным) получено как сумма четверки и шестерки (выделены голубым). Это правило справедливо для всех внутренних чисел, составляющих треугольник Паскаля, и объясняется свойствами коэффициентов бинома Ньютона.Для коэффициентов бинома Ньютона справедливы следующие свойства: коэффициенты, равноудаленные от начала и конца разложения, равны между собой  ,p=0,1,2,…,n; ; сумма биномиальных коэффициентов равна числу2, возведенному в степень, равную показателю степени бинома Ньютона:  ; сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах. Первые два свойства являются свойствами числа сочетаний. Перестановки, размещения, сочетания с повторениями. Перестановка – _ Размещение- Сочетание- 7. Признак клеток (Дирихле). Принцип Дирихле — простой, интуитивно понятный и часто полезный метод для доказательства утверждений о конечном множестве. Этот принцип часто используется в дискретной математике, где устанавливает связь между объектами («кроликами») и контейнерами («клетками») при выполнении определённых условий. В английском и некоторых других языках данное утверждение известно как «принцип голубей и ящиков, когда объектами являются голуби, а контейнерами — ящики.Этот принцип утверждает, что если множество из n элементов разбито на m непересекающихся частей, не имеющих общих элементов, гдеn > mто, по крайней мере, в одной части будет более одного элемента.На языке отображений эта формулировка означает, чтоесли в А (множестве предметов) больше элементов, чем в В (множестве ящиков), то не существует обратимого отображения А в В.Другая формулировка “ принципа Дирихле“:если n + 1 предмет поместить в n мест, то обязательно хотя бы в одном месте окажутся хотя бы двапредмета.В шутливой форме принцип Дирихле выглядит так: “нельзя посадить семерых зайцев в три клетки так, чтобы в каждой клетке находилось не больше двух зайцев “. [2] Признак математической индукции. Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному. Определение 2 9. Высказывания. Отрицание, конъюнкция, дизъюнкция, их таблицы истинности.Высказываниемназывается повествовательное предложение, о котором в данной ситуации можно сказать, что оно истинно или ложно, но не то и другое одновременно.Например, «Москва – столица России», «число 2 больше 5» – высказывания. Первое высказывание является истинным, а второе – ложным.Отрицаниемвысказывания  называется высказывание («не », «неверно, что »), которое истинно, когда ложно, и ложно, когда истинно.Таблица истинности для отрицания: Конъюнкцией (логическим умножением) двух высказываний  , называется высказывание (« и »), которое истинно только в том случае, когда и оба истинны.Таблица истинности для конъюнкций: Дизъюнкцией (логическим сложением) двух высказываний  , называется высказывание (« или »), которое истинно, когда хотя бы одно из них истинно.Таблица истинности для дизъюнкций: 10. Импликация и эквиваленция, таблицы их истинности.Импликацией двух высказываний  ,  называется высказывание  («если , то », « влечёт », «из следует », « имплицирует »), которое ложно тогда и только тогда, когда истинно, а ложно.Таблица истинности для импликаций:  Эквивалентностью высказываний  , называется высказывание (« эквивалентно », « тогда и только тогда, когда », «для того, чтобы , необходимо и достаточно, чтобы »), которое истинно тогда и только тогда, когда  и  оба истинны или ложны.Таблица истинности для эквивалентности: 11. Эквивалентные высказывания. Теорема о свойствах логических эквивалентностей.Эквиваленцией (или эквивалентностью) двух высказываний Х, У называется новое высказывание, которое считается истинным, когда оба высказывания Х, У, либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.Эквиваленция высказываний Х, У обозначается символом  (или,

22. Булева алгебра.Булевой алгеброй называется дистрибутивная структура с неравными друг другу единицей 1 и нулем 0, в которой всякий элемент имеет дополнение. Булева алгебра всегда содержит не менее двух элементов. Алгебра, содержащая только 1 и 0, называется вырожденной.23. Основные законы и свойства операций Булевой алгебры.Как любая алгебраическая система булева алгебра базируется на совокупности некоторых предположений, которые принято называть аксиомами, т.е предположениями не требующими доказательств. Аксиомы определяются для двух логических значений 1 ( "ИСТИНА" ) и 0 ( "ЛОЖЬ" ) и операций логического умножения (конъюнкции), которая обозначается " & ", " · " или не обозначается вовсе, логического сложения (дизъюнкции), которая обозначатся " v ", "+", и отрицания ( инверсии ), которая обозначается горизонтальной чертой (" - ") над переменной или выражением, например, . Булевой переменной, обозначаемой обычно xi , называется переменная принимающая два логических значения { 0, 1 }.Ниже приведены аксиомы булевой алгебры относительно дизъюнкции, конъюнкции и отрицания.Аксиомы конъюнкции 0·* 0 = 0 ; 1·* 1 = 1 ; 0·* 1 = 1·* 0 = 0 ;Аксиомы дизъюнкции 0 v 0 = 0 ; 1 v 1 = 1 ; 0 v 1 = 1 v 0 = 1 ;Аксиомы отрицания Если x = 0 , то ˆх = 1 ;Если x = 1 , то ˆх = 0 ;Следующие 5 правил обычно называют теоремами булевой алгебры. Особенностью теорем булевой алгебры является то, что для их доказательства пользуются простой подстановкой значений булевых переменных. Это обусловлено тем, что переменные могут принимать только 2 значения - 0 и 1.Операции с константами : Идемпотентность (тавтология, повторение) :  Для n переменных:  Противоречие :Правило "исключенного третьего" :Двойное отрицание (инволюция) :Следующие 4 правила обычно называют законами или тождествами булевой алгебры.Ассоциативность ( ассоциативный закон ) :   Коммутативность ( коммутативный закон ) :   11. Дистрибутивность ( дистрибутивный закон ) :конъюнкции относительно дизъюнкции: дизъюнкции относительно конъюнкции: 24. Отношения множеств. Область определения и множество значений отношения. Обратное отношение. Область определения отношения R – это подмножество всех элементов х множества Х, для которыхнайдется элемент y, связанный с данным элементом отношением R. Область значения отношения R – подмножество всех элементов y множества У, для которых найдутся элементы x, связанные с y отношением R (). Пример: Если область определения отношения совпадает с некоторым множеством X, то говорят, что отношение определено на X. Итак, если R — отношение на множестве X, то R X X. Множество всех первых элементов пар из R называется областью определения отношения R. Множеством значений отношения R называется множество всех вторых элементов пар из R. Обратное отношение (отношение, обратное к R) — это двухместное отношение, состоящее из пар элементов (у, х), полученных перестановкой пар элементов (х, у) данного отношения R. Обозначается: R−1. Для данного отношения и обратного ему верно равенство: (R−1)−1= R. Взаимо-обратные отношения(взаимообратные отношения) — отношения, являющиеся обратными друг по отношению к другу. Область значений одного из них служит областью определения другого, а область определения первого — областью значений другого. 25. Специальные свойства отношений на А. Частично упорядоченные множества.Бинарным отношением на множестве А называется подмножество его квадрата RÍ A2. Бинарным отношением между множествами А и В называются подмножество принадлежащее декартовому произведению 2-х множеств: RÍ АхВ.Если упорядоченная пара (а1, а2) принадлежит отношению R, то говорят что а1 R а2, то есть между элементом а1 и а2 уст-но отношение R.Областью определения бинарного отношения называется множество элементов а, в котором в принадлежит бинарному отношению: þR={a|bÎ aRb}.Областью значения бинарного отношения называют множество b, в котором а принадлежит бинарному значению:PR={b|aÎ aRb }.Обратное отношение для отношения R называется отношение: R-1={(b,a)|(a,b) Î R }.Отношение можно задать:-с помощью любого способа задания множеств-С помощью матрицы бинарного отношения. Матрица бинарного отношения это квадратная матрица R элементы которой определяются следующим образом rij=1, (ai,aj)Î R, 0 – в противном случае.-С использованием графа. Каждому бинарному отношению можно подставить в соответствие граф G(X,U), содержащий множество вершин Х, и множество ребер U. При этом вершины ajai соединяются дугой если упорядоченная пара ajai Î R. Так как отношения являются множеством упорядоченных пар, то для отношения можно определить те же операции, что и для множеств (объединение, пересечение, разность, дополнение, симметрическая разность).

Взвешенные графы

Ремарка

U=U;  ;

Ø=A;  Ø= Ø;

8.   ;

9. Закон инволюции:=

10. Закон исключения разности:  .

18. Булеан множеств. Количество элементов булеана конечного множества (с доказательством).

Булеаном множества X называется множество всех подмножеств множества X, включая его само и пустое множество.

Булеан конечного множества конечен, причем количество элементов булеана 2A равно 2n, где n – количество элементов множества A.

Теорема о мощности булеана.Пусть A - конечное множество мощности n , тогда мощность его булеана равна 2n : |Б(A)| = 2n .

Доказательство. Установим соответствие между множествами Б(A)и En по правилу: подмножеству   поставим в соответствие набор длины n  из нулей и единиц, в котором на местах с номерами i1, . . . , is стоят единицы, а на остальных местах нули. Это соответствие является взаимооднозначным, поэтому |Б(A)| = |En| = 2n . Теорема доказана.

В качестве примера приведенного в доказательстве теоремы соответствия рассмотрим случай n = 3 . Пусть A = {α, β, γ}, тогда

Б(A) = {ø, {α}, {β}, {γ}, {α, β}, {α, γ}, {β, γ}, {α, β, γ}};

E3 = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1) .

Соответствие между E3 и Б(A) может быть установлено 8! различными способами (оно равно числу перестановок из элементов множества E3 ). В данном случае элементы множества E3 записаны так, что эле- менту, стоящему на k -ом месте,   в Б(A) соответствует k -ый элемент множества   соответствует (0, 0, 1) , {α, β} — (1, 1, 0) и т. д.

Отметим следующее свойство булеана:

Б(AB) = {A1 B1|A1 Б(A), B1 Б(B)}.

Действительно, пусть произвольное множество C Б(AB) , т. е. CAB . Обозначим через

A1 = CA , B1 = CB . Тогда A1 A , B1 B  и C = A1 B1 , где A1 Б(A) , B1 Б(B) . Докажем обратное включение. Если A1 Б(A) , B1 Б(B) , тоA1 A ,B1 B . ТогдаA1 B1 ABA1 B1 Б(AB) .
19. Декартово произведение двух и нескольких множеств. Кортежи. Арифметическое n-мерное точечное пространство.

Понятие кортежа, как и понятие множества, является одним из основных математических понятий, поэтому для него также не существует определения через другие понятия. Интуитивно кортеж можно определить какупорядоченныйнабор компонентов. Кортежи одинаковы (равны), если они состоят из одних и тех же компонентов, причем порядок этих компонентов также одинаков.

Компоненты кортежей обычно перечисляются в круглых скобках.

Например,a= (3, 8, 2) – кортеж. Числа 3, 8, 2 – его компоненты. Другой пример кортежа –c= (8, 2, 3). Кортежиaиc– разные.

В кортеже могут быть одинаковые элементы. Например,x= (8, 3, 2, 3) иy= (3, 8, 2, 3) – кортежи, причем разные.

Количество компонентов в кортеже называется его длиной. Например, длина кортежейaиcравна трем, а кортежейxиy– четырем. Кортежи из двух компонентов называют парами, из трех – тройками, и т.д.

Простейший пример кортежа – вектор, задающий координаты точки на плоскости или в пространстве. Очевидно, что, например, точки на плоскости с координатами (5, 7) и (7, 5) – разные.

Как и для множеств, компоненты кортежей могут быть любыми (не только числами). Например, перечень студентов учебной группы, упорядоченный по их среднему баллу за время учебы, можно считать кортежем.

Декартовым (или прямым) произведением множествAиBназывается множество, состоящее из всех тех и только тех пар (т.е. кортежей длины 2), первый компонент которых принадлежит множествуA, а второй – множествуB. Декартово произведение множествAиBобозначается какA×B.

Аналогично определяется произведение трех, четырех и т.д. множеств. Декартово произведение множеств
А1,А2, ...,Аr– это множество всех тех и только тех кортежей длиныr, первый компонент которых принадлежит множествуА1, второй – множествуА2, ...,r-й – множествуАr. Такое декартово произведение обозначается как  .

Декартово произведение множества на само это множество называется декартовым квадратом. Аналогично можно говорить о декартовой третьей степени и т.д.

n-мерным арифметическим пространством называется совокупность всевозможных упорядоченных наборов из n вещественных чисел, над которыми введены две операции:

1) сложение наборов;

2) умножение наборов на вещественные числа.

Операция сложения:

Пусть даны некоторые наборы x = (x1, x2, …, xn ) и y = (y1, y2, …, yn), xiyi – вещественные числа:

x + y = z = (x1 + y1, x2 + y2,…, xn + yn)

Свойства сложения:

x + y = y + x – коммутативность (x + y) + z = x + (y + z) = y + (x + z) – ассоциативность  $! (существует единственный) 0 = (0, 0, …, 0) , x + 0 = x "x $!y, что x + y = 0, т. е. y – набор, противоположный x.

Операция умножения на число

x = (x1, x2 … xn), λ Î R

λhx = xhλ = w = (λx1, λx2, … λxn)

Свойства умножения на число:

λhx = xhλ – коммутативность μh(λx) = (μλ)hx 1hx = 0hx = (0, 0, …, 0).

Совместные свойства операций:

λx + λy = λ(
xy) дистрибутивность μx + λx = (μ + λ )x x + y = 0 Û y = (-1)hx – набор противоположный набору х.
20. Диаграммы Эйлера - Венна основных операций над множествами.

Диаграмма Эйлера-Венна — геометрическая схема, которая используется для моделирования множеств и для схематичного изображения и отношений между ними.Диаграмма позволяет наглядно отразить различные утверждения о множествах. При использовании этого метода универсальное множество изображается в виде прямоугольника, подмножества изображают кругами. Диаграммы нашли свое применение в математике, логике, менеджменте и других прикладных направлениях.

Построение диаграммы Эйлера-Венна — это изображение большого прямоугольника, который представляет универсальное множество U. Внутри прямоугольника изображаются замкнутые фигуры, обозначающие множества. Если множеств не более 3, то изображаются круги, и эллипсы, если множеств 4. Фигуры пересекаются в наиболее общем случае, требуемом задачей, что обозначается соответствующим образом.

Предположим, что на диаграмме изображен круг, представляющий множество А. Область в середине круга множества А отражает истинность выражения А, в то время как область вне круга обозначает ложь. Логическая операция будет отображаться на диаграмме при помощи штриховки тех областей, в которых ее значения истинны. В соответствии с алгеброй логики, конъюнкция множеств А и B будет истинна только тогда, когда истинны оба множества. Тогда на диаграмме будет отмечена область пересечения множеств.

С помощью диаграмм Эйлера-Венна можно доказать все законы алгебры, представляя их графически. Это возможно через выполнение следующего алгоритма:

  1. В первую очередь необходимо начертить диаграмму, заштриховав все множества, находящиеся в левой части равенства.

  2. Следующим шагом будет начертание другой диаграммы и штриховка всех множеств, которые находятся в правой части равенства.

  3. В случае, когда на диаграммах заштрихована одна и та же область, торжество истинно.


21. Теорема об основных свойствах операций над множествами