Файл: Углеводы и их роль в живой природе.doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 75

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Из моносахаридов при замещении гидроксильных групп на аминогруппу (-NH2) образуются аминосахара. В организме человека наиболее важными аминосахарами являются глюкозамин и галактозамин:

Они входят в состав сложных углеводов мукополисахаридов, которые выполняют защитную и специфическую функции, характерные для слизей, стекловидного тела глаза, синовиальной жидкости суставов, системы свертывания крови и др.

Из глюкозы в процессе ее окисления или восстановления образуются многие функционально важные вещества: аскорбиновая кислота, спирт сорбит, глюконовая, глюкуроновая, сиаловые и другие кислоты.

Углеводы рибоза и дезоксирибоза в свободном виде встречаются редко. Чаще они входят в состав сложных веществ, т.е. используются в организме в пластических процессах. Так, рибоза входит в состав нуклеотидов (АТФ, АДФ, АМФ) и РНК, а также многих коферментов (НАДФ, НАД, ФАД, ФМН, КоА). Дезоксирибоза входит в состав ДНК. В организме рибоза и дезоксирибоза (как и другие пентозы) находятся в циклической форме.

Глицериновый альдегид и диоксиацетон образуются в тканях организма в процессе метаболизма глюкозы и фруктозы. Являясь изомерами, эти триозы способны к взаимопревращению:

В тканях организма в процессе метаболизма углеводов и жиров образуются фосфорные эфиры глицеринового альдегида и фосфодиоксиацетона. Фосфоглицериновый альдегид является высокоэнергетическим субстратом биологического окисления. В процессе его окисления образуется АТФ, пировиноградная кислота (ПВК) и молочная кислота (лактат).

Моносахариды легко вступают в химические взаимодействия, поэтому редко встречаются в живых организмах в свободном состоянии. Особенно важными для организма производными моносахаридов являются олигосахариды.

Олигосахариды – это сложные углеводы, построенные из небольшого количества (от 2 до 10) остатков моносахаридов. Если два остатка моносахаридов соединены между собой 1,4 или 1,2-гликозидными связями, то образуются дисахариды. Основными дисахаридами являются сахароза, мальтоза и лактоза. Их молекулярная формула С12Н22О12.

Сахароза – (тростниковый или свекловичный сахар) состоит из остатка глюкозы и фруктозы, соединенных между собой 1,2-гликозидной связью, которая образуется при взаимодействии гидроксильной группы первого атома углерода глюкозы и гидроксильной группы второго атома углерода фруктозы.



Сахароза является основным компонентом пищевого сахара. В процессе пищеварения под влиянием фермента сахаразы расщепляется на глюкозу и фруктозу.

Мальтоза – (фруктовый сахар) состоит из двух молекул глюкозы, соединенных 1,4-гликозидной связью:

Много мальтозы содержится в солодовых экстрактах злаков, проросших зернах. Она образуется в желудочно-кишечном тракте в процессе гидролиза крахмала или гликогена. При пищеварении распадается на две молекулы глюкозы под воздействием фермента мальтазы.

Лактоза – (молочный сахар) состоит из молекулы глюкозы и галактозы, которые соединены между собой 1,4-гликозидной связью:


Лактоза синтезируется в молочных железах в период лактации. В системе пищеварения человека лактоза расщепляется под воздействием лактазы на глюкозу и галактозу. Поступление лактозы в организм с пищей способствует развитию молочнокислых бактерий, подавляющих развитие гнилостных процессов. Однако, у людей, имеющих низкую активность фермента лактазы (у большинства взрослого населения Европы, Востока, арабских стран, Индии), развивается интолерантность к молоку.

Рассмотренные дисахариды имеют сладкий вкус. Если сладость сахарозы принять за 100, то сладость лактозы составит 16, мальтозы - 30, глюкозы - 70, фруктозы -170. Кроме того, они обладают и высокой питательной ценностью. Поэтому они не рекомендуются для питания людей, страдающих ожирением и диабетом. Их заменяют искусственными веществами, например, сахарином, которые имеют сладкий вкус (сладость сахарина - 40000), но не усваиваются организмом.

Большинство углеводов в природе находятся в виде полисахаридов и делятся на две большие группы – гомо- и гетерополисахариды.

Полисахариды – это углеводы, в которых число моносахаридных остатков превышает десять и может доходить до десятков тысяч. Если сложный углевод состоит из одинаковых моносахаридных остатков, он называется гомосахаридом, если из разных – гетеросахаридом.

Гомополисахариды – твердые вещества, не обладают сладким вкусом. Основными представителями гомополисахаридов являются крахмал и гликоген.

Крахмал состоит из амилозы и амилопектина, является резервным питательным веществом у растений (крахмальные

зерна в клубнях картофеля, в зернах злаковых). Содержание амилозы в крахмале составляет 15-20%, амилопектина 75-85%. В состав амилозы входит порядка 100 - 1000, в состав амилопектина – 600 - 6000 остатков глюкозы.


Схема строения цепей крахмала - амилозы (а), амилопектина (б) и участка молекулы гликогена (в)


Гликоген – животный крахмал. В своем составе содержит от 6000 до 300000 остатков глюкозы. Может откладываться про запас как резервный источник энергии. Наибольшее количество гликогена запасается в клетках печени (7%), в скелетных мышцах (1-3%), в сердце (0,5%).Крахмал и гликоген расщепляются в желудочно-кишечном тракте ферментом амилазой, в клетках животных гликоген расщепляется гликогенфосфорилазой.

Клетчатка (целлюлоза) – основная составная часть клеточной стенки растений, нерастворимая в воде, состоит из 2000-11000 остатков глюкозы, соединенных бетта-гликозидной связью. В организме играет важную роль в стимуляции перистальтики кишечника.

Гетерополисахариды – это сложные углеводы, состоящие из двух и более моносахаридов, чаще всего связаны с белками или липидами.

Гиалуроновая кислота - линейный полимер, состоит из глюкуроновой кислоты и ацетилглюкозамина. Входит в состав клеточных стенок, синовиальной жидкости, стекловидного тела, обволакивает внутренние органы, является желеобразной бактерицидной смазкой.

Хондроитинсульфаты – разветвленные полимеры, состоят из глюкуроновой кислоты и N-ацетилглюкозамина. Служат основными структурными компонентами хрящевой ткани, сухожилий, роговицы глаза; содержатся также в костях и коже.


  1. Углеводы в организме человека


Запасы углеводов в организме не превышают 2-3% от массы тела. За счет них энергетические запасы нетренированного человека могут покрываться не более 12 часов, а у спортсменов – и того меньше1. При нормальном потреблении углеводов организм спортсмена работает боле экономно и менее утомляется. Следовательно, необходимо постоянное поступление углеводов с пищей. Потребность организма в глюкозе зависит от уровня энергозатрат. По мере увеличения интенсивности, тяжести физического труда потребность в углеводах увеличивается. Норма углеводов в суточном рационе составляет 400 граммов для людей, не занимающихся спортом; для спортсменов – от 600 до 1000 граммов. 64% углеводов поступают в организм в виде крахмала (хлеб, крупы, макаронные изделия), 36% – в виде простых сахаров (сахароза, фруктоза, мед, пектиновые вещества).


Поступающие в организм человека сложные углеводы пищи имеют иную структуру, чем углеводы человеческого тела. Так полисахариды, составляющие растительный крахмал, – амилоза и амилопектин – представляют собой линейные или слаборазветвленные полимеры глюкозы, а крахмал человеческого тела – гликоген, имея в основе те же глюкозные остатки, образует из них иную – сильноразветвленную полимерную структуру. Поэтому усвоение пищевых олиго- и полисахаридов начинается с их гидролитического (под действием воды) расщепления в процессе пищеварения до моносахаридов.

Гидролитическое расщепление углеводов в процессе пищеварения происходит под действием ферментов гликозидаз, расщепляющих 1-4 и 1-6 гликозидные связи в молекулах сложных углеводов. Простые углеводы пищеварению не подвергаются, может только происходить брожение некоторой части их в толстом кишечнике под действием ферментов микроорганизмов.

К гликозидазам относятся амилаза слюны, поджелудочного и кишечного соков, мальтаза слюны и кишечного сока, конечная декстриназа, сахараза и лактаза кишечного сока. Гликозидазы активны в слабощелочной среде и угнетаются в кислой среде, за исключением амилазы слюны, которая катализирует гидролиз полисахаридов в слабокислой среде и теряет активность при увеличении кислотности.

В ротовой полости начинается пищеварение крахмала под воздействием амилазы слюны, которая расщепляет 1-4 гликозидные связи между остатками глюкозы внутри молекул амилозы и амилопектина. При этом образуются дектстрины и мальтоза. В слюне содержится в небольших количествах и мальтаза, гидролизующая мальтозу до глюкозы. Другие дисахариды во рту не расщепляются.

Большая часть молекул полисахаридов не успевает гидролизоваться во рту. Смесь крупных молекул амилозы и амилопектина с более мелкими – декстринами, мальтозой, глюкозой – поступает в желудок. Сильнокислая среда желудочного сока угнетает ферменты слюны, поэтому дальнейшие превращения углеводов происходят в кишечнике, сок которого содержит бикарбонаты, нейтрализующие соляную кислоту желудочного сока. Амилазы поджелудочного и кишечного соков более активны, чем амилаза слюны. В кишечном соке содержится также конечная декстриназа, гидролизующая 1-6 связи в молекулах амилопектина и декстринов. Эти ферменты завершают расщепление полисахаридов до мальтозы. В слизистой оболочке кишечника вырабатываются также ферменты, способные гидролизовать дисахариды: мальтаза, лактаза, сахараза. Под воздействием мальтазы мальтоза расщепляется на две глюкозы, сахароза под воздействием сахаразы – на глюкозу и фруктозу, лактаза расщепляет лактозу на глюкозу и галактозу.


В пищеварительных соках отсутствует фермент целлюлаза, гидролизующая поступающую с растительной пищей целлюлозу. Однако в кишечнике имеются микроорганизмы, ферменты которых могут расщеплять некоторое количество целлюлозы. При этом образуется дисахарид целлобиоза, распадающийся потом до глюкозы.

Не расщепившаяся целлюлоза является механическим раздражителем стенки кишечника, активирует его перистальтику и способствует продвижению пищевой массы.

Под действием ферментов микроорганизмов продукты распада сложных углеводов могут подвергаться брожению, в результате чего образуются органические кислоты, СО2, СН4 и Н2.

Образовавшиеся в результате гидролиза углеводов моносахариды по своей структуре одинаковы у всех живых организмов. Среди продуктов пищеварения преобладает глюкоза (60%), она же является главным моносахаридом, циркулирующим в крови. В кишечной стенке фруктоза и галактоза частично превращаются в глюкозу, так что содержание ее в крови, оттекающей от кишечника, больше, чем в его полости.


Схема превращений углеводов в пищеварительной системе
Всасывание моносахаридов – активный физиологический процесс, протекающий с затратой энергии. Ее обеспечивают окислительные процессы, происходящие в клетках кишечной стенки. Моносахариды получают энергию, взаимодействуя с молекулой АТФ в реакциях, продуктами которых являются фосфорные эфиры моносахаридов. При переходе из кишечной стенки в кровь фосфорные эфиры расщепляются фосфатазами, и в кровоток поступают свободные моносахариды. Поступление их из крови в клетки различных органов также сопровождается их фосфорилированием.

Однако скорость превращения и появления в крови глюкозы из разных продуктов разная. Механизм этих биологических процессов отражен в понятии «гликемический индекс» (ГИ), которое показывает скорость превращения углеводов пищи (крахмала, гликогена, сахарозы, лактозы, фруктозы и т.д.) в глюкозу крови.

Известно, что уровень глюкозы в крови колеблется от 3,33 ммоль/л до 5,55 ммоль/л и регулируется с помощью гормонов инсулина, понижающего этот уровень до нормы и глюкагона, повышающего его до нормы. Увеличение уровня глюкозы в крови после приема пищи (пищевая или алиментарная гипергликемия) повышает, следовательно, и содержание инсулина в крови.

Инсулин – анаболический гормон; он воздействует на мембраны клеток, увеличивая их проницаемость для глюкозы, следовательно, увеличивая и питание клеток. В случаях избыточного веса (ожирение), такой процесс можно контролировать, используя продукты с низким и средним гликемическим индексом, и, наоборот, при интенсивных физических нагрузках – с высоким гликемическим индексом.