Файл: Задание по расчету цилиндрической зубчатой передачи.doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 30

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Коэффициент осевого перекрытия:



Расчет на выносливость зубьев при изгибе:



Коэффициенты, учитывающие форму зуба принимаем:

Коэффициент, учитывающий форму сопряженных поверхностей зубьев:

ZH=1.77*cosβ=1.77*0.848=1,501

Коэффициент, учитывающий механические свойства материалов сопряженных зубчатых колес:

ZM=275 Н1/2/мм
Коэффициент, учитывающий суммарную длину контактных линий:



Коэффициент, учитывающий распределение нагрузки между зубьями:

k=1.13; k=1.05

Коэффициент, учитывающий динамическую нагрузку в зацеплении:

KHv=1.03

Удельная расчетная окружная сила:



Допустимое контактное напряжение:





Допускаемое предельное контактное напряжение:





Расчет на контактную прочность:



Условие при расчете выносливости зубьев при изгибе:



Коэффициент, учитывающий форму зуба:

YF1=3.84, для зубьев шестерни

YF2=3.61, для зубьев колеса

Коэффициент, учитывающий перекрытие зубьев Yε=1

Коэффициент, учитывающий наклон зубьев:



Коэффициент, учитывающий распределение нагрузки между зубьями:



Коэффициент, учитывающий распределение на грузки по ширине венца:


k=1.1

Коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении:

KFv=1.07

Удельная расчетная окружная сила:



Допустимое напряжение на изгиб:



Для зубьев шестерни определяем:

Предел ограниченной выносливости зубьев на изгиб при базе испытаний 4*106:


Коэффициент безопасности для колес с однородной структурой материала принимаем SF=1.7

Коэффициент учитывающий влияние приложение нагрузки на зубья kFC=1 -для нереверсивной передачи.

Коэффициент долговечности находим по формуле:



, поэтому принимаем kFL=1


Для зубьев колеса соответственно определяем:




SF=1.7; kFC=1; kFL=1; т.к NFE2=3.24*107>4*106



Расчет на выносливость при изгибе:


Допустимое предельное напряжение на изгиб:



Предельное напряжение не вызывающая остаточной деформации или хрупкого излома зубьев для шестерни и колеса.

Принимаем коэффициент безопасности SF=1,7






Расчет на прочность при изгибе для шестерни:



Расчет на прочность при изгибе для колеса:



3.Усилия в зацеплении зубчатой передачи и нагрузки на валы
Усилия в зацеплении прямозубых цилиндрических зубчатых колес определяются по формулам:

Окружное усилие:



Радиальное усилие:


Осевое усилие:




4. Расчет тихоходного вала и выбор подшипников.

Для предварительного расчета принимаем материал для изготовления вала:

Материал- Сталь 40 нормализованная

σв=550 МПа

σТ=280 МПа

Допустимое напряжение на кручение [τ]=35 МПа

Диаметр выходного участка вала:



Для определения расстояния между опорами вала предварительно находим:

- длина ступицы зубчатого колеса lст=80 мм

- расстояние от торца ступицы до внутренней стенки корпуса ∆=8мм.

- толщина стенки корпуса:



- ширина фланца корпуса:



- диаметр соединительных болтов:



- размеры для установки соединительных болтов:



- ширина подшипника В=22 мм принята первоначально для подшипника 212 с внутренним посадочным диаметром 60 мм и наружным диаметром 110 мм.


- размеры h1=14 мм и h2=10 мм назначены с учетом размеров крышек для подшипников с наружным диаметром 111 мм.


- ширина мазеудерживающего кольца с=6мм и расстояние до подшипника f=6мм, (смазка подшипника пластичной смазкой (V=2,939 м/с<3 м/с), поэтому мазеудерживающие кольца lk≈18мм

Таким образом, расстояние между опорами вала равно:



так, как колесо расположено на валу симметрично относительно его опор, то а=в=0,5*l=0.5*138=69 мм

Конструирование вала:

Диаметры:

- выходного участка вала d1=40 мм

- в месте установки уплотнений d2=55 мм

- в месте установки подшипника d3=60 мм

- в месте посадки колеса d4=63 мм

Длины участков валов:

- выходного участка l1=2d1=2*40=80 мм

- в месте установки уплотнений l2=45 мм

- под подшипник l3=B=22 мм

- под мазеудерживающее кольцо l4=lk+2=18+2=20 мм

- для посадки колеса l5=lСТ-4=80-4=76 мм

Проверка статической прочности валов

Радиальные реакции в опорах вала находим в двух взаимно перпендикулярных плоскостях. Составляющие радиальных реакций в направлениях окружной и радиальной сил на каждой из опор вала будут равны:



Осевая реакция опоры 1 равна осевой силе:

Fa=Fx=1810.82 H

Максимальные изгибающие моменты в двух взаимно перпендикулярных плоскостях:



Результатирующий изгибающий момент:



Эквивалентное напряжение в опасном сечении вала:



Напряжение изгиба вала:



Напряжение сжатия вала:


Напряжение кручение вала:




Номинальное эквивалентное напряжение:



Максимальное допустимое напряжение:



Проверка статической прочности вала при кратковременных нагрузках:



Выбор подшипников качения тихоходного вала.

Для опор тихоходного вала предварительно назначаем подшипник 212 с внутренним посадочным диаметром d=60 мм, динамическая грузоподъемность которого С=52000 Н и статическая грузоподъемность С0=3100 Н

Для опоры 1:

, что соответствует е=0,23

Отношение

Х=0,56; Y=1.95, а расчетная динамическая нагрузка



Для опоры 2:



поэтому X=1; y=0

Расчетная динамическая нагрузка:



С учетом режима нагружения (Т), для которого коэффициент интенсивности kE=0.8. расчетная эквивалентная динамическая нагрузка на подшипник:



Для 90% надежности подшипников (a1=1) и обычных условиях эксплуатации (a23=0.75) расчетная долговечность подшипников в милн.об:



Расчетная долговечность подшипника в часах:



что больше требуемого срока службы передачи.

4.Шпоночные соединения

Выбор размера шпонок

Для проектируемой сборочной единицы тихоходного вала выбираем следующие размеры призматических шпонок: