ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.12.2023
Просмотров: 1486
Скачиваний: 38
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
системы – нейрона. Уже на этом этапе ученые столкнулись с невозможностью искусственно повторить все многообразие как типов нервных клеток, так и еще большего многообразия их взаимодействия между собой и со средовыми факторами. В конце концов, опираясь на информационный подход, весь сложнейший физиологический процесс возбуждения (торможения) был редуцирован до принципа работы реле – «да–нет». Нейрон рассматривается как источник, получатель и проводник сигналов, срабатывающий по достижении сигналом определенной величины (порога). В самом упрощенном виде нейрон представляется как элемент с входным и выходным информационными каналами. Число входов (синапсов) может быть различным, вплоть до нескольких тысяч. Выход всегда один. Считается, что нейрон подчиняется принципу суперпозиции, т. е. выходной сигнал равен алгебраической сумме сигналов на входе.
Принципиальная схема искусственного нейрона приведена далее на рисунке 13.
Реальные действующие модели нейрона представляют собой разнообразные электрические цепи, принципиально соответствующие приведенной блок-схеме. Электроимпульсы по своим параметрам стремятся приблизиться к электрическим характеристикам нервного импульса
(энергетические характеристики – в микровольтах, временные – в миллисекундах), хотя это и не обязательно. Блоки, моделирующие синапсы, имеют два входа (возбуждающий и тормозной) с импульсами одинаковой амплитуды (силы), но противоположными по знаку. Импульсы экспоненциально затухают за 4 мсек. Инвертор суммирует положитель-ные и отрицательные сигналы от синапсов по принципу суперпозиции и управляет генератором потенциалов действия.
Последний по существу есть пороговое устройство, технически осуществляемое как система из электронной батареи, диода и резистора. После срабатывания генератора потенциалов действия--импульс поступает на выходной блок, представляющий собой [. формирователь импульсов. Применение печатных микросхем^ позволяет инженерное воплощение нейрона сжать до размеров i булавочной головки.
Поскольку поведение естественного нейрона характеризуется значительными нелинейностями (разрывами, скачками и прочими особенностями импульсации), то оно трудно поддается математическому описанию, зато много легче моделируется технически «схемами на транзисторах и диодах – элементах, которые сами обладают нелинейными характеристиками»
[106, с. 59–60].
В последние годы появляются сведения о моделировании нейронов не в традиционном варианте – с двумя стабильными состояниями при постоянном пороге возбудимости, а с переменным порогом, уровень которого меняется благодаря активности самого искусственного нейрона [228].
Моделирование работы мозга
Разумеется, что никакая модель нейрона (впрочем, как и сам отдельный нейрон) не способна дать «на выходе» психического эффекта, скажем, в виде узнавания, предпочтения и т. п. Для этого следует создать модель, имитирующую работу
Принципиальная схема искусственного нейрона приведена далее на рисунке 13.
Реальные действующие модели нейрона представляют собой разнообразные электрические цепи, принципиально соответствующие приведенной блок-схеме. Электроимпульсы по своим параметрам стремятся приблизиться к электрическим характеристикам нервного импульса
(энергетические характеристики – в микровольтах, временные – в миллисекундах), хотя это и не обязательно. Блоки, моделирующие синапсы, имеют два входа (возбуждающий и тормозной) с импульсами одинаковой амплитуды (силы), но противоположными по знаку. Импульсы экспоненциально затухают за 4 мсек. Инвертор суммирует положитель-ные и отрицательные сигналы от синапсов по принципу суперпозиции и управляет генератором потенциалов действия.
Последний по существу есть пороговое устройство, технически осуществляемое как система из электронной батареи, диода и резистора. После срабатывания генератора потенциалов действия--импульс поступает на выходной блок, представляющий собой [. формирователь импульсов. Применение печатных микросхем^ позволяет инженерное воплощение нейрона сжать до размеров i булавочной головки.
Поскольку поведение естественного нейрона характеризуется значительными нелинейностями (разрывами, скачками и прочими особенностями импульсации), то оно трудно поддается математическому описанию, зато много легче моделируется технически «схемами на транзисторах и диодах – элементах, которые сами обладают нелинейными характеристиками»
[106, с. 59–60].
В последние годы появляются сведения о моделировании нейронов не в традиционном варианте – с двумя стабильными состояниями при постоянном пороге возбудимости, а с переменным порогом, уровень которого меняется благодаря активности самого искусственного нейрона [228].
Моделирование работы мозга
Разумеется, что никакая модель нейрона (впрочем, как и сам отдельный нейрон) не способна дать «на выходе» психического эффекта, скажем, в виде узнавания, предпочтения и т. п. Для этого следует создать модель, имитирующую работу
1 ... 21 22 23 24 25 26 27 28 ... 35
совокупности взаимодействующих
нейронов. На языке инженерного моделирования эту совокупность чаще всего называют
нейронной сетью. На языке физиологии (и психологии) эту совокупность чаще всего называют
мозгом, подразумевая в первую очередь кору головного мозга и, конечно, не забывая, что мозг – только один из отделов целостной нервной системы, что центральная нервная система (ЦНС) никак не может функционировать без периферической НС.
Нейронные сети уже могут реализовать один из важнейших принципов работы естественных нейронных ансамблей – упорядоченность в случайном, порядок из хаоса [300, 301, 302, 390, 391].
Классической иллюстрацией реализации этого принципа является сокращение мышцы. На ее эффекторы посылаются сигналы от сотен и сотен мотонейронов, каждый аксон которых разветвляется на десятки коллатералей. Каждая коллатеральная ветвь иннервирует отдельное
мышечное волокно, вызывая в нем одиночный цикл напряжения-расслабления. Но в результате несин-хронизированного наложения сокращений огромного множества волокон производится плавное сокращение всей мышцы. Получается, что, хотя одиночный нервный импульс подчиняется закону «все или ничего», общий ответ представляет собой «градуальную реакцию».
Для компоновки сетей используются как описанные выше модели отдельных нейронов, так и отличающиеся от них в некоторых деталях. Например, С. Дейч приводит квазилинейную модель нейрона, способную имитировать действие медиаторов на работу нервной клетки, а в совокупности с другими такими же моделями реализующую описанный только что принцип
«порядок из хаоса» [ 106]. Практика моделирования нейронных сетей демонстрирует их значительное разнообразие по составу, структуре, функциям. Нейронные сети с обратной связью позволяют моделировать процессы памяти и обучения.
Наиболее известное достижение в моделировании нейронных сетей – перцептроны
Розенблатта [325, 398, 475]. Это технические устройства, выполняющие функции восприятия и памяти, позволяющие распознавать не очень сложные объекты (например, буквы алфавита). При этом перцептроны обладают способностью обучаться. Теоретической основой перцептронов выступает «модель мозга», под которой Ф. Розенблатт понимал «любую теоретическую систему, которая стремится объяснить физиологические функции мозга с помощью известных законов физики и математики, а также известных фактов нейроанатомии и нейрофизиологии» [325, с. 23].
Инженерное воплощение перцептрона на входе имеет матрицу из фотоэлементов, объединенных с простыми электронными схемами так, что освещенному фотоэлементу соответствует сигнал +1, а не освещенному – ноль. За этой матрицей датчиков, сопоставимых с рецепторными клетками сетчатки глаза, размещен слой электрических элементов, каждый из которых соединен с каким-либо одним фотоэлементом случайным образом. Электрические элементы обладают порогом срабатывания и выдают сигналы «Да» или «Нет» в виде +1 или –1.
Если сумма приходящих от фотоэлементов сигналов меньше порога срабатывания, то на выходе злектроэлемента выдается сигнал –1, если больше – сигнал +1. Сколько и как просуммировалось сигналов на входе электрозлемента – не важно, главное – превышает или нет эта сумма пороговую величину элемента. Электрозлементы далее упорядочение соединены с третьим слоем элементов – усилителей сигнала. Коэффициент усиления может регулироваться по общей для всех усилителей команде. Каждый электроэлемент в совокупности с усилителем является
«ячейкой памяти» и носит название «ассоциативный прибор». Сигналы от этих ассоциативных приборов подаются на входное устройство, именуемое «решающим прибором» и суммирующее все сигналы от элементов памяти. Решающий прибор также обладает порогом срабатывания и двумя выходными сигналами; если сумма сигналов от усилителей больше нуля, выдается ответ
+1, если меньше нуля, то –1, независимо от того, откуда и от каких элементов предыдущего слоя пришли на его вход сигналы. Таким образом, перцептрон способен разделить любые комбинации состояний фотоэлементов на своем входе на два класса, а это есть аналог различения двух объектов.
Но простым различением дело не ограничивается. Перцептрон в состоянии различить не просто разные объекты, но и вариации этих объектов, т. е. он способен производить классификацию. Например, он может сгруппировать в два класса множество различных начертаний двух букв. В процессе распознавания он может ошибаться, но тут же самостоятельно исправляется за счет обучающего эффекта. Обучающее воздействие реализуется в виде изменения коэффициента усиления при ошибке, что расценивается как наказание и требует повторного акта распознавания этого объекта. Повторная ошибка влечет еще большее изменение коэффициента усиления. В конце концов задача неизбежно решается правильно.
В работе перцептрона особо примечательны два обстоятельства. Первое – это случайное распределение связей между фотоэлементами и элементами «память». Это значит, что в конструкции реализован упоминавшийся уже всеобщий принцип организации природы – упорядоченное в случайном (порядок из хаоса). Естественно, что этот принцип должен быть приложим и к работе мозга и психики. Поэтому возникают большие сомнения в абсолютной правомерности выдвинутого советской психологией принципа детерминизма. По-видимому, с неменьшим основанием можно говорить об индетерминизме психического, о его не меньшем подчинении вероятностным законам, чем причинно-следственным [249, 254]. Известно, что
«строгий детерминизм приводит к огромной ошибке в конечных состояниях при ничтожно малых начальных возмущениях, а случайность – к детерминизму результата, осредненного по многим реализациям... Вероятностные законы игры в кости парадоксально дают детерминизм – независимость результата от пути процесса, порядок, возникающий из хаоса» [390, с. 151–152].
Исходная хаотичность нервных ансамблей (в том числе имитируемой перцепт-роном сетчатки
Для компоновки сетей используются как описанные выше модели отдельных нейронов, так и отличающиеся от них в некоторых деталях. Например, С. Дейч приводит квазилинейную модель нейрона, способную имитировать действие медиаторов на работу нервной клетки, а в совокупности с другими такими же моделями реализующую описанный только что принцип
«порядок из хаоса» [ 106]. Практика моделирования нейронных сетей демонстрирует их значительное разнообразие по составу, структуре, функциям. Нейронные сети с обратной связью позволяют моделировать процессы памяти и обучения.
Наиболее известное достижение в моделировании нейронных сетей – перцептроны
Розенблатта [325, 398, 475]. Это технические устройства, выполняющие функции восприятия и памяти, позволяющие распознавать не очень сложные объекты (например, буквы алфавита). При этом перцептроны обладают способностью обучаться. Теоретической основой перцептронов выступает «модель мозга», под которой Ф. Розенблатт понимал «любую теоретическую систему, которая стремится объяснить физиологические функции мозга с помощью известных законов физики и математики, а также известных фактов нейроанатомии и нейрофизиологии» [325, с. 23].
Инженерное воплощение перцептрона на входе имеет матрицу из фотоэлементов, объединенных с простыми электронными схемами так, что освещенному фотоэлементу соответствует сигнал +1, а не освещенному – ноль. За этой матрицей датчиков, сопоставимых с рецепторными клетками сетчатки глаза, размещен слой электрических элементов, каждый из которых соединен с каким-либо одним фотоэлементом случайным образом. Электрические элементы обладают порогом срабатывания и выдают сигналы «Да» или «Нет» в виде +1 или –1.
Если сумма приходящих от фотоэлементов сигналов меньше порога срабатывания, то на выходе злектроэлемента выдается сигнал –1, если больше – сигнал +1. Сколько и как просуммировалось сигналов на входе электрозлемента – не важно, главное – превышает или нет эта сумма пороговую величину элемента. Электрозлементы далее упорядочение соединены с третьим слоем элементов – усилителей сигнала. Коэффициент усиления может регулироваться по общей для всех усилителей команде. Каждый электроэлемент в совокупности с усилителем является
«ячейкой памяти» и носит название «ассоциативный прибор». Сигналы от этих ассоциативных приборов подаются на входное устройство, именуемое «решающим прибором» и суммирующее все сигналы от элементов памяти. Решающий прибор также обладает порогом срабатывания и двумя выходными сигналами; если сумма сигналов от усилителей больше нуля, выдается ответ
+1, если меньше нуля, то –1, независимо от того, откуда и от каких элементов предыдущего слоя пришли на его вход сигналы. Таким образом, перцептрон способен разделить любые комбинации состояний фотоэлементов на своем входе на два класса, а это есть аналог различения двух объектов.
Но простым различением дело не ограничивается. Перцептрон в состоянии различить не просто разные объекты, но и вариации этих объектов, т. е. он способен производить классификацию. Например, он может сгруппировать в два класса множество различных начертаний двух букв. В процессе распознавания он может ошибаться, но тут же самостоятельно исправляется за счет обучающего эффекта. Обучающее воздействие реализуется в виде изменения коэффициента усиления при ошибке, что расценивается как наказание и требует повторного акта распознавания этого объекта. Повторная ошибка влечет еще большее изменение коэффициента усиления. В конце концов задача неизбежно решается правильно.
В работе перцептрона особо примечательны два обстоятельства. Первое – это случайное распределение связей между фотоэлементами и элементами «память». Это значит, что в конструкции реализован упоминавшийся уже всеобщий принцип организации природы – упорядоченное в случайном (порядок из хаоса). Естественно, что этот принцип должен быть приложим и к работе мозга и психики. Поэтому возникают большие сомнения в абсолютной правомерности выдвинутого советской психологией принципа детерминизма. По-видимому, с неменьшим основанием можно говорить об индетерминизме психического, о его не меньшем подчинении вероятностным законам, чем причинно-следственным [249, 254]. Известно, что
«строгий детерминизм приводит к огромной ошибке в конечных состояниях при ничтожно малых начальных возмущениях, а случайность – к детерминизму результата, осредненного по многим реализациям... Вероятностные законы игры в кости парадоксально дают детерминизм – независимость результата от пути процесса, порядок, возникающий из хаоса» [390, с. 151–152].
Исходная хаотичность нервных ансамблей (в том числе имитируемой перцепт-роном сетчатки
глаза) приводит в конечном счете к стабильным психологическим эффектам. Второе замечательное обстоятельство заключается в том, что описанное выше обучение перцепт-рона осуществляется не по заранее составленной программе, а самостоятельно через поощрение и наказание. Оба отмеченных момента можно отнести к принципам самоорганизации!
Однако перцептрон – это не завершенный продукт инженерно-технической мысли, предназначенный для широкого внедрения, а модель несложного процесса обработки информации. И даже его самые совершенные модели не воплощают пока что всех идей
Розенблатта. Тем не менее «по принципу работы перцептрона построены универсальные программы для ЭВМ, обучающиеся медицинскому и техническому диагнозу, интерпретации геофизических данных, прогнозу погоды и т. д.» [310, с. 257].
Хотя теория и практика перцептронов «является первой в мировой литературе попыткой изложения статистических принципов построения мозгоподобных устройств» [272, с. 9], сам
Розен-блатт скромен и ссылается на целый ряд предшественников: «...автор отнюдь не претендует на оригинальность. В частности, используемая нейронная модель непосредственно восходит к модели, впервые предложенной Маккалоком и Питтсом; основная философская концепция сформировалась под сильным влиянием теорий Хебба и Хейка и экспериментальных данных Лешли; особое пристрастие, которое автор питает к вероятностному методу, было не чуждым и другим теоретикам, таким, как Эшби, Аттли, Минский, Маккей и фон Нейман» [325, с.
25].
Действительно, эти ученые внесли огромный вклад в развитие моделирования психики, правда, придерживаясь несколько иных, нежели Ф. Розенблатт, принципов. Так, первые идеи по теории автоматов, способных моделировать психические процессы и поведение, были изложены
У. Маккалоком и У. Питтсом еще в 1943 году [205]. Суть их предложений сводилась к тому, что поскольку активность нейрона подчиняется закону «Все или ничего», то нервную деятельность можно изучать методами математической логики. Они доказали принципиальную возможность построения моделей-автоматов, имитирующих работу нейронных сетей. Правда, в дальнейшем пришлось признать, что в рамках математической логики удовлетворительной адекватности с естественными нервно-психическими процессами достичь невозможно. Тем не менее идеи У.
Маккалока и У Питтса дали толчок множеству последующих исследований по моделированию психики и теории автоматов.
Моделирование психических явлений
Наибольшие успехи на пути имитации работы нейрофизиологических механизмов сопутствовали моделированию восприятия, памяти и мышления. Правда, надо заметить, что жесткая дифференциация этих направлений не совсем правомерна. Так, уже на примере перцептрона видно, что отделить друг от друга процессы восприятия и памяти в моделировании невозможно (впрочем, как и у естественных носителей психики). Доказательством такой переплетенности служит и тот факт, что моделирование восприятия началось в связи с моделированием мышления [46]. Поэтому будем пользоваться подобным разделением, памятуя о его условности.
Тогда в области моделирования восприятия (а точнее, опознавания в его различных модификациях [245,246]) необходимо указать на классические работы концептуального характера
Ф. Хей-ка [447] и А. Аттли [489], реализующие идею о том, что механизм человеческого восприятия основан на использовании классифицирующей системы. Не менее известны попытки
Д. Хебба объединить структурный и функциональный подходы при моделировании восприятия и
памяти [448]. В традиционном для информационного подхода ключе работал Ф. Джордж. При
этом он особо подчеркивал, что «следует твердо помнить, что кибернетика как научная дисциплина тесно связана с бихевиоризмом и является прямым его ответвлением. Бихевиористы, по существу, всегда подходили к организму так, как если бы этот организм был машиной» [109].
Дж. Дейч ввел учет вероятностных факторов при распознавании образов [436]. Немалый вклад в эту область познания внесли и наши отечественные ученые. Так, широко известна гипотеза
«компактности образа» Э. М. Бравермана [16] и концепция М. М. Бонгарда, согласно которой человек (и машина) ни одну задачу не решает как совершенно новую, а использует свои способности «узнавать» сходные признаки с уже известными и строить аналогии, опираясь на способности к абстрагированию [42]. Теорией перцептронов занимались Е. И. Соколов [352], В. П.
Сочивко [355] и другие наши ученые.
Техническая реализация всех этих идей касается главным образом двух модальностей: зрительной и слуховой. При этом акцент делается на восприятии речи (письменной и звуковой) как наиболее «человеческом» информационном канале связи. В ряду таких разработок наибольшую известность получили «читающие» машины Дж. Калбертсона, Дж. Дейча, Ф.
Джорджа, О. Селфрид-жа, А. Раппопорта, «слушающие» машины К. Девиса-, Р. Биддаль-фа и С.
Однако перцептрон – это не завершенный продукт инженерно-технической мысли, предназначенный для широкого внедрения, а модель несложного процесса обработки информации. И даже его самые совершенные модели не воплощают пока что всех идей
Розенблатта. Тем не менее «по принципу работы перцептрона построены универсальные программы для ЭВМ, обучающиеся медицинскому и техническому диагнозу, интерпретации геофизических данных, прогнозу погоды и т. д.» [310, с. 257].
Хотя теория и практика перцептронов «является первой в мировой литературе попыткой изложения статистических принципов построения мозгоподобных устройств» [272, с. 9], сам
Розен-блатт скромен и ссылается на целый ряд предшественников: «...автор отнюдь не претендует на оригинальность. В частности, используемая нейронная модель непосредственно восходит к модели, впервые предложенной Маккалоком и Питтсом; основная философская концепция сформировалась под сильным влиянием теорий Хебба и Хейка и экспериментальных данных Лешли; особое пристрастие, которое автор питает к вероятностному методу, было не чуждым и другим теоретикам, таким, как Эшби, Аттли, Минский, Маккей и фон Нейман» [325, с.
25].
Действительно, эти ученые внесли огромный вклад в развитие моделирования психики, правда, придерживаясь несколько иных, нежели Ф. Розенблатт, принципов. Так, первые идеи по теории автоматов, способных моделировать психические процессы и поведение, были изложены
У. Маккалоком и У. Питтсом еще в 1943 году [205]. Суть их предложений сводилась к тому, что поскольку активность нейрона подчиняется закону «Все или ничего», то нервную деятельность можно изучать методами математической логики. Они доказали принципиальную возможность построения моделей-автоматов, имитирующих работу нейронных сетей. Правда, в дальнейшем пришлось признать, что в рамках математической логики удовлетворительной адекватности с естественными нервно-психическими процессами достичь невозможно. Тем не менее идеи У.
Маккалока и У Питтса дали толчок множеству последующих исследований по моделированию психики и теории автоматов.
Моделирование психических явлений
Наибольшие успехи на пути имитации работы нейрофизиологических механизмов сопутствовали моделированию восприятия, памяти и мышления. Правда, надо заметить, что жесткая дифференциация этих направлений не совсем правомерна. Так, уже на примере перцептрона видно, что отделить друг от друга процессы восприятия и памяти в моделировании невозможно (впрочем, как и у естественных носителей психики). Доказательством такой переплетенности служит и тот факт, что моделирование восприятия началось в связи с моделированием мышления [46]. Поэтому будем пользоваться подобным разделением, памятуя о его условности.
Тогда в области моделирования восприятия (а точнее, опознавания в его различных модификациях [245,246]) необходимо указать на классические работы концептуального характера
Ф. Хей-ка [447] и А. Аттли [489], реализующие идею о том, что механизм человеческого восприятия основан на использовании классифицирующей системы. Не менее известны попытки
Д. Хебба объединить структурный и функциональный подходы при моделировании восприятия и
памяти [448]. В традиционном для информационного подхода ключе работал Ф. Джордж. При
этом он особо подчеркивал, что «следует твердо помнить, что кибернетика как научная дисциплина тесно связана с бихевиоризмом и является прямым его ответвлением. Бихевиористы, по существу, всегда подходили к организму так, как если бы этот организм был машиной» [109].
Дж. Дейч ввел учет вероятностных факторов при распознавании образов [436]. Немалый вклад в эту область познания внесли и наши отечественные ученые. Так, широко известна гипотеза
«компактности образа» Э. М. Бравермана [16] и концепция М. М. Бонгарда, согласно которой человек (и машина) ни одну задачу не решает как совершенно новую, а использует свои способности «узнавать» сходные признаки с уже известными и строить аналогии, опираясь на способности к абстрагированию [42]. Теорией перцептронов занимались Е. И. Соколов [352], В. П.
Сочивко [355] и другие наши ученые.
Техническая реализация всех этих идей касается главным образом двух модальностей: зрительной и слуховой. При этом акцент делается на восприятии речи (письменной и звуковой) как наиболее «человеческом» информационном канале связи. В ряду таких разработок наибольшую известность получили «читающие» машины Дж. Калбертсона, Дж. Дейча, Ф.
Джорджа, О. Селфрид-жа, А. Раппопорта, «слушающие» машины К. Девиса-, Р. Биддаль-фа и С.
Балашека, Д. Фрая и П. Денеса, Г. Даули и С. Балашека, обзор которых приведен в работах
[46,47]. В нашей стране также конструировались подобные автоматы. Например, «динамический анализатор» Л. П. Мясникова [226], «слушающий автомат» Н. Е. Кирилловаи Л. В. Фаткина [155] и другие реализации [282].
Завершить наш мини-обзор моделирования восприятия через обращения к нервному субстрату психики хотелось бы указанием на работы Л. М. Веккера как на связующее звено между моделированием физиологических и психологических механизмов [60, 61, 62]. Он настойчиво проводит мысль о необходимости при математическом и техническом моделировании психики учитывать ее специфику: «Конструируемые устройства функционируют по независимым схемам и моделируют не построение чувственного образа в его специфических структурных и функциональных характеристиках, а конечный результат акта опознания – выдачу соответствующего сигнала. Это различие все-таки осознается, и соответствующие устройства относятся большинством авторов не к модели восприятия, а именно к моделям опознания. Но, с другой стороны, необходимо было, очевидно, пройти данный этап моделирования, идущий изнутри техники и ее собственными средствами, чтобы можно было отчетливо выявить те существенные различия, которые имеют место в реализации соответствующих функций современными перцептивными машинами и сенсорными системами человека, и вскрыть те ограничения, которые заключает в себе чисто инженерный путь моделирования. Так, сопоставление показывает, что если по пропускной способности и количеству операций в единицу времени автоматы значительно превосходят функции сенсорных систем человека, то по таким важнейшим показателям, как надежность, помехоустойчивость, гибкость, универсальность, работа современных перцептивных автоматов несоизмеримо отстает от психофизиологических сенсорных функций человека» [60, с. 8]. Л. М. Веккер полагает, что преодолеть лакуну между знаниями физиологическими и психологическими, а также разрыв между методами математико- техническими и психологическими в моделировании психических явлений должен подход к изучению психики, опирающийся на общие для всех этих областей знания, принципы и категории.
Таким подходом, по мнению Л. М. Веккера, является кибернетический синтез. Кибернетический синтез в качестве одной из основных категорий использует категорию «информационные процессы», выполняющую роль «посредствующего звена между общефилософским понятием отражения и конкретными понятиями нервных и нервно-психических явлений». Эту категорию он характеризует как «систему научных понятий, адекватно отражающую процесс приема информации, ее кодирования, хранения, декодирования, переработки по определенным алгоритмам, перекодирования осведомительной информации в командную и использования последней для регулирования функций исполнительных органов системы управления» [60, с. 14, с. 15]. Однако Л. М. Веккер с сожалением отмечает, что единый научный язык кибернетического синтеза пока «находится в стадии становления, а адекватный перевод психологических понятий на этот язык не только еще не осуществлен, но на пути его реализации стоят принципиальные трудности» [60, с. 10]. На эти трудности мы указывали выше, считая их действительно принципиальными и навряд ли преодолимыми (по крайней мере, в обозримом будущем).
В тесной связи с моделированием восприятия развивалось и моделирование памяти, поскольку познавательные процессы включают в себя как сенсорно-перцептивные, так и мнемические компоненты. Но тем не менее в разных работах делались разные акценты. Одно время в столь мощном направлении в науке, как когнитивная психология, главной задачей считалось выяснение механизмов хранения и извлечения информации из памяти [353]. Если вообще говорить об упоминавшихся информационных процессах, то они немыслимы без механизмов запоминания, хранения и воспроизведения информации.
Однако «ни одному исследователю не удалось обнаружить в мозгу живых существ четко определенных запоминающих механизмов. В связи с отсутствием объекта для модели само понятие «моделирование памяти» становится несколько неопределенным» [46, с. 52]. Поэтому разработка действующих моделей памяти серьезно отклоняется от принятых в психологии представлений о памяти. Это касается как форм прижизненной памяти, так и ее основных операций. В психологии считается, что наша память в зависимости от срока хранения представлена несколькими формами: мгновенная; кратковременная; промежуточная; долговременная двух типов (к которой имеется произвольный доступ и к которой такого доступа нет); оперативная, функции которой предположительно выполняет кратковременная память.
Инженерно-техническое моделирование ограничивается только двумя формами
– долговременной (ДП) с произвольным доступом и кратковременной (КП), не отличаемой от оперативной. При этом объем и содержание долговременной памяти в этих устройствах исходно заданы и неизменны, и лишь оперативная память может пополняться, уточняться,
переструктурироваться. Соотношение объемов этих форм памяти в ЭВМ примерно 100:1 в пользу долговременной. Что касается мнемических операций, то классические для психологии процессы активного запоминания, хранения, забывания и воспроизведения (в виде узнавания, вспоминания, припоминания и воспоминания) [248] значительно видоизменены. Так, запоминание представляется как сумма ввода информации (психологический аналог – восприятие) и ее закрепление, хранение – как пассивный процесс без преобразования и переработки поступившей информации, забывание, как правило, отсутствует, а воспроизведение представлено в основном операци-ей узнавания. Все это является прямым следствием принципиальных различий между человеком и машиной, главным из которых в этом контексте выступает наличие у человека и отсутствие у машины внутреннего субъективного мира. А следовательно, в отношении даже самой «умной» машины трудно говорить о произвольности, активности, осознанности ее операций. Технически мнемические операции в ЭВМ реализуются по сходному с перцептронами принципу, а именно с помощью двоичного кода. Соединение «элементов памяти» шифруется как
1, а их разъединене как 0. Каждый элемент может быть в одном из двух состояний: возбужден – не возбужден; заряжен – не заряжен; замкнут – не замкнут и т. д. Переход элемента в иное состояние «очищает» память. Любая новая информация шифруется новой комбинацией элементов.
Наиболее сложным в техническом исполнении считается процесс воспроизведения, точнее узнавания. Его первые воплощения базировались на простом переборе «следов памяти» и их сличении с признаками опознаваемых объектов. Впоследствии были использованы и другие технические идеи и принципы. Но все они так или иначе опираются на биохимические или физиологические теории памяти. Биохимические (внутриклеточные) концепции апеллируют к молекулам рибонуклеиновой кислоты (РНК), способным принимать невообразимо большое число состояний (до 10 20
) и резонировать на повторные воздействия. Эти состояния РНК и являются кодами сигналов. Их закрепление происходит при сильных, длительных или повторных воздействиях. Согласно знаменитой «двуступенчатой гипотезе», обратимые состояния РНК являются основой КП, а необратимые – ДП. Физиологические теории основное внимание обращают на взаимодействие нейронов, на работу нейронных ансамблей, основным: соединяющим элементом которых является синапс. Шифруется информация путем структурно- функциональных изменений в синапсах. Наиболее известная реализация этой идеи – «гипотеза консолидация следов». Пожалуй, сюда же надо отнести и так называемую «анатомическую теорию», согласно которой в двух возбужденных нейронах появляется способность к развитию направленных друг к другу коллатеральных ветвей, между которыми в течение часа образуется синапс.
Одна из первых концептуальных моделей памяти такого рода была предложена Д. Векслером в 1939 году [490]. Он считал, что формирование мнемического следа связано со структурными изменениями клеточных ядер вставочных нейронов. Первое же инженерное решение модели памяти с опорой на физиологию было предпринято Н. Рочестером в начале 1950-х годов. Он на
ЭВМ продемонстрировал диффузную реверберацию возбуждения нейронных цепочек, лежащую в основе процессов восприятия и запоминания [46]. Позже действующие модели были предложены Дж. Калбертсоном [435], Д. Стьюартом [484] и другими [441]. Модель, основанная на принципах условно-рефлекторной деятельности («обучаемая матрица»), была разработана К.
Штейн-бухом [414]. Из этого ряда несколько выделяются ассоциативные модели Л. П. Крайзера и
Н. М. Амосова, реализующие психологические теории памяти [6, 8]. Попытку выйти за ограничение объема памяти через смысловую переработку информации предпринял Дж. Холланд
[449].
Несмотря на всю важность работ по моделированию восприятия и памяти, наибольший интерес представляет, конечно, моделирование мышления – высшего познавательного процесса, специфически человеческой способности. Здесь трудности моделирования связаны, во-первых, так же, как и для памяти, с неопределенностью мозговой локализации мыслительных процессов и, во-вторых, с «недостаточной изученностью процесса мышления» психологами [293, с. 5]. В результате нет ясного представления об объекте моделирования ни с точки зрения физиологии, ни с точки зрения психологии. Наибольшее признание в компьютерно-техническом моделировании мышления получила его трактовка как «целенаправленная переработка информации», причем эта переработка представляется в форме решения задачи, что, видимо, справедливо, если считать этап решения задачи центральным звеном в процессе мышления.
Но совершенно очевидно, что переработка информации, пусть даже целенаправленная, не то же самое, что мыслительная деятельность человека, неизбежно включающая в себя и эмоциональные, и волевые, и мотивационные компоненты. К тому же психологический и
1, а их разъединене как 0. Каждый элемент может быть в одном из двух состояний: возбужден – не возбужден; заряжен – не заряжен; замкнут – не замкнут и т. д. Переход элемента в иное состояние «очищает» память. Любая новая информация шифруется новой комбинацией элементов.
Наиболее сложным в техническом исполнении считается процесс воспроизведения, точнее узнавания. Его первые воплощения базировались на простом переборе «следов памяти» и их сличении с признаками опознаваемых объектов. Впоследствии были использованы и другие технические идеи и принципы. Но все они так или иначе опираются на биохимические или физиологические теории памяти. Биохимические (внутриклеточные) концепции апеллируют к молекулам рибонуклеиновой кислоты (РНК), способным принимать невообразимо большое число состояний (до 10 20
) и резонировать на повторные воздействия. Эти состояния РНК и являются кодами сигналов. Их закрепление происходит при сильных, длительных или повторных воздействиях. Согласно знаменитой «двуступенчатой гипотезе», обратимые состояния РНК являются основой КП, а необратимые – ДП. Физиологические теории основное внимание обращают на взаимодействие нейронов, на работу нейронных ансамблей, основным: соединяющим элементом которых является синапс. Шифруется информация путем структурно- функциональных изменений в синапсах. Наиболее известная реализация этой идеи – «гипотеза консолидация следов». Пожалуй, сюда же надо отнести и так называемую «анатомическую теорию», согласно которой в двух возбужденных нейронах появляется способность к развитию направленных друг к другу коллатеральных ветвей, между которыми в течение часа образуется синапс.
Одна из первых концептуальных моделей памяти такого рода была предложена Д. Векслером в 1939 году [490]. Он считал, что формирование мнемического следа связано со структурными изменениями клеточных ядер вставочных нейронов. Первое же инженерное решение модели памяти с опорой на физиологию было предпринято Н. Рочестером в начале 1950-х годов. Он на
ЭВМ продемонстрировал диффузную реверберацию возбуждения нейронных цепочек, лежащую в основе процессов восприятия и запоминания [46]. Позже действующие модели были предложены Дж. Калбертсоном [435], Д. Стьюартом [484] и другими [441]. Модель, основанная на принципах условно-рефлекторной деятельности («обучаемая матрица»), была разработана К.
Штейн-бухом [414]. Из этого ряда несколько выделяются ассоциативные модели Л. П. Крайзера и
Н. М. Амосова, реализующие психологические теории памяти [6, 8]. Попытку выйти за ограничение объема памяти через смысловую переработку информации предпринял Дж. Холланд
[449].
Несмотря на всю важность работ по моделированию восприятия и памяти, наибольший интерес представляет, конечно, моделирование мышления – высшего познавательного процесса, специфически человеческой способности. Здесь трудности моделирования связаны, во-первых, так же, как и для памяти, с неопределенностью мозговой локализации мыслительных процессов и, во-вторых, с «недостаточной изученностью процесса мышления» психологами [293, с. 5]. В результате нет ясного представления об объекте моделирования ни с точки зрения физиологии, ни с точки зрения психологии. Наибольшее признание в компьютерно-техническом моделировании мышления получила его трактовка как «целенаправленная переработка информации», причем эта переработка представляется в форме решения задачи, что, видимо, справедливо, если считать этап решения задачи центральным звеном в процессе мышления.
Но совершенно очевидно, что переработка информации, пусть даже целенаправленная, не то же самое, что мыслительная деятельность человека, неизбежно включающая в себя и эмоциональные, и волевые, и мотивационные компоненты. К тому же психологический и