ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.12.2023
Просмотров: 1485
Скачиваний: 38
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
информационно-кибернетический аспекты мышления по-разному трактуют процесс переработки информации. Согласно математической теории связи К. Шеннона, входящей в основание кибернетики, во-первых, содержание сообщения «совершенно несущественно проблеме передачи информации» [405, с. 405], и, во-вторых, «количество информации не может возрастать в процессе ее передачи, после того как она покинула источник» [90, с. 339]. В плане психологическом, несомненно, содержание информации играет самую существенную роль в ее
«субъективной транспортировке», а сама информация не только «получается» субъектом от какого-то источника, но и «возникает» у него в процессе мышления, добывается, вычерпывается им из объекта и тем самым все время увеличивается. «Процессуальный, динамический характер мышления означает, что оно постоянно обогащается, насыщается все новым и новым содержанием» [49, с. 167]. По-видимому, этим можно объяснить, что моделируется в основном логическое (дискурсивное) и конвергентное (репродуктивное), но не интуитивное и не дивергентное (творческое) мышление. Даже так называемое «эвристическое программирование», опирающееся на теорию игр и учитывающее вероятностные факторы, все-таки не может претендовать на имитацию ни интуитивного, ни дивергентного мышления. А. В. Брушлинский, подытоживая наиболее бурный этап кибернетического моделирования мышления в 50-60-е годы
XX в. пишет: «Если действительно любое мышление всегда продуктивное (творческое), то, как мы видим, неизбежен отрицательный ответ на столь волнующий многих вопрос: «Может ли машина мыслить?» Если наряду с творческим все же существует еще и так называемое репродуктивное
«мышление», тогда этот ответ окажется положительным» [49, с. 179].
Историю построения действующих моделей мышления, видимо, надо начинать с первых конструкторских решений вычислительных операций, т. е. с первых арифмометров.
Действительно, любое решение математической задачи требует от человека интеллектуальных усилий. Первые механические арифмометры, способные выполнять арифметические действия, были разработаны в середине XIX в. предпринимателем и изобретателем Томасом де
Кольмаром. В 1878 г. усовершенствованный вариант арифмометра предложил русский математик
П. Л. Чебышев. В 1904 г. А. Н. Крылов разработал проект машины, способной решать дифференциальные уравнения. Первая половина XX в. знаменуется переходом от механических воплощений решающих машин к электрическим, а во второй половине столетия на ведущие позиции выходит электронная техника, способная реализо-вывать самые сложные алгоритмы и программы. Таким образом, моделирование мышления и совершенствование вычислительной техники невозможны друг без друга, это настоящий симбиоз.
Первую успешную попытку смоделировать на цифровой вычислительной машине (ЦВМ) интеллектуальный процесс совершили в 1950-х годах американские ученые А. Ньюэлл, Г. Саймон и Дж. Шоу [463,464,465]. Они писали, что хотели понять, как математик приходит к доказательству теоремы, даже если он вначале не знает, как ему это сделать и сможет ли вообще ее доказать.
Их программа «Логик-теоретик» состоит в последовательном переходе от одного этапа к другому при непрерывном изменении состава проблем. Ведущую роль в программе играют алгоритмы сравнения и подобия. Процесс продолжается до тех пор, пока в результате решения подпроблем не будет решена основная проблема или пока не будет нарушено одно из ограничений программы.
Позже этими же исследователями была разработана программа «Общий решатель задач»
(ОРЗ). От предыдущей модели эта программа отличалась тем, что пересмотр всех подпроблем осуществлялся не последовательно от одной к другой, а по оптимальному пути. Направление пересмотра подпроблем может меняться в зависимости от успешности или безуспешности решения текущей подпроблемы. Иначе говоря, в программе объединены две логические системы: поиск решения задачи и анализ средств достижения цели. Для этого используется абстрагирование от конкретных деталей первоначально заданных объектов и условий.
После этих первых успехов работы по моделированию решения задач пошли потоком.
Появляются программы эвристического характера. Они «характеризуются способностью решать задачи индуктивным путем при недостаточной дедуктивной информации» [46, с. 70]. У. Рейтман предлагает программу «Аргус», а вместе с М. Санчесом он изобретает программу «Композитор»
[322]. Г. Гелентор составляет программу решения геометрических задач с элементами самообучения. Примечательна программа ученика Ньюэлла и Саймона Дж. Кларксона, моделирующая работу банковского консультанта по покупке акций. Эта программа сугубо практической направленности выдавала клиентам советы, почти совпадающие с советами настоящих консультантов. Интересен метод поиска закономерностей по множествам положительных и отрицательных примеров, предложенный Д. С. Миллером и названный инициалами автора «ДСМ-метод» [292]. Все эти (как и многие другие) программыде-монстрируют
«субъективной транспортировке», а сама информация не только «получается» субъектом от какого-то источника, но и «возникает» у него в процессе мышления, добывается, вычерпывается им из объекта и тем самым все время увеличивается. «Процессуальный, динамический характер мышления означает, что оно постоянно обогащается, насыщается все новым и новым содержанием» [49, с. 167]. По-видимому, этим можно объяснить, что моделируется в основном логическое (дискурсивное) и конвергентное (репродуктивное), но не интуитивное и не дивергентное (творческое) мышление. Даже так называемое «эвристическое программирование», опирающееся на теорию игр и учитывающее вероятностные факторы, все-таки не может претендовать на имитацию ни интуитивного, ни дивергентного мышления. А. В. Брушлинский, подытоживая наиболее бурный этап кибернетического моделирования мышления в 50-60-е годы
XX в. пишет: «Если действительно любое мышление всегда продуктивное (творческое), то, как мы видим, неизбежен отрицательный ответ на столь волнующий многих вопрос: «Может ли машина мыслить?» Если наряду с творческим все же существует еще и так называемое репродуктивное
«мышление», тогда этот ответ окажется положительным» [49, с. 179].
Историю построения действующих моделей мышления, видимо, надо начинать с первых конструкторских решений вычислительных операций, т. е. с первых арифмометров.
Действительно, любое решение математической задачи требует от человека интеллектуальных усилий. Первые механические арифмометры, способные выполнять арифметические действия, были разработаны в середине XIX в. предпринимателем и изобретателем Томасом де
Кольмаром. В 1878 г. усовершенствованный вариант арифмометра предложил русский математик
П. Л. Чебышев. В 1904 г. А. Н. Крылов разработал проект машины, способной решать дифференциальные уравнения. Первая половина XX в. знаменуется переходом от механических воплощений решающих машин к электрическим, а во второй половине столетия на ведущие позиции выходит электронная техника, способная реализо-вывать самые сложные алгоритмы и программы. Таким образом, моделирование мышления и совершенствование вычислительной техники невозможны друг без друга, это настоящий симбиоз.
Первую успешную попытку смоделировать на цифровой вычислительной машине (ЦВМ) интеллектуальный процесс совершили в 1950-х годах американские ученые А. Ньюэлл, Г. Саймон и Дж. Шоу [463,464,465]. Они писали, что хотели понять, как математик приходит к доказательству теоремы, даже если он вначале не знает, как ему это сделать и сможет ли вообще ее доказать.
Их программа «Логик-теоретик» состоит в последовательном переходе от одного этапа к другому при непрерывном изменении состава проблем. Ведущую роль в программе играют алгоритмы сравнения и подобия. Процесс продолжается до тех пор, пока в результате решения подпроблем не будет решена основная проблема или пока не будет нарушено одно из ограничений программы.
Позже этими же исследователями была разработана программа «Общий решатель задач»
(ОРЗ). От предыдущей модели эта программа отличалась тем, что пересмотр всех подпроблем осуществлялся не последовательно от одной к другой, а по оптимальному пути. Направление пересмотра подпроблем может меняться в зависимости от успешности или безуспешности решения текущей подпроблемы. Иначе говоря, в программе объединены две логические системы: поиск решения задачи и анализ средств достижения цели. Для этого используется абстрагирование от конкретных деталей первоначально заданных объектов и условий.
После этих первых успехов работы по моделированию решения задач пошли потоком.
Появляются программы эвристического характера. Они «характеризуются способностью решать задачи индуктивным путем при недостаточной дедуктивной информации» [46, с. 70]. У. Рейтман предлагает программу «Аргус», а вместе с М. Санчесом он изобретает программу «Композитор»
[322]. Г. Гелентор составляет программу решения геометрических задач с элементами самообучения. Примечательна программа ученика Ньюэлла и Саймона Дж. Кларксона, моделирующая работу банковского консультанта по покупке акций. Эта программа сугубо практической направленности выдавала клиентам советы, почти совпадающие с советами настоящих консультантов. Интересен метод поиска закономерностей по множествам положительных и отрицательных примеров, предложенный Д. С. Миллером и названный инициалами автора «ДСМ-метод» [292]. Все эти (как и многие другие) программыде-монстрируют
совмещение моделирования физиологических и психологических механизмов. В них нет прямой апелляции к нервному субстрату, но в целом подход реализует идею моделирования той субстанции (причины), от деятельности которой зависит решение задачи (результат – следствие).
Совершенно оригинальное но в принципе характерное для этого подхода решение предложил
Н. И. Кобозев [157]. Он обращается не просто к нервному субстрату психики, а к атомно-мо- лекулярному уровню организации нервной системы и организма в целом. Раз организм человека состоит из атомов и молекул, а психическая деятельность предопределена работой организма, то и механизмы психической деятельности должны быть сложены из атомов и молекул. Этот посыл позволяет анализировать процесс мышления с позиций термодинамики. Одной из характеристик любой молекулярно-кинетической системы является наличие в ней самопроизвольных процессов, переводящих систему во все более устойчивое состояние. Мерой этих переходов из состояния в состояние выступает энтропия. Далее Н. И. Кобозев доказывает, что логическое мышление является именно таким самопроизвольным процессом,
но
в котором отсутствует неупорядоченность, т. е. энтропия равна нулю. Но это противоречит законам термодинамики, поскольку при этом температура тела мыслящего человека должна была бы равняться абсолютному нулю. Таким образом, считает Н. И. Кобозев, мышление как однозначное логическое суждение – единственное естественное явление, приводящее к конечному идеальному результату – безэнтропийному состоянию. Отсюда делается вывод, что мышление осуществляется при помощи не обычных молекулярных механизмов, а при помощи либо специальных субатомных механизмов (и надо найти соответствующие нейтральные частицы), либо сверхмолекулярных механизмов, присущих неизвестным пока свойствам биологических форм движения материи. Версия Н. И. Кобозева – хороший пример того, как процесс
моделирования может изменять наши представления об объекте-прототипе.
Дальнейшее развитие моделирования мышления, а шире – познавательных возможностей человека, приводит к формированию самостоятельного направления в науке – моделированию
искусственного интеллекта. Объем разработок здесь невообразимо велик. Как замечает один из авторитетных специалистов в этой области П. Уинстон, «идеи и модели появляются почти ежемесячно» [374, с. 6]. С 1969 года регулярно проходят международные конференции по проблемам искусственного интеллекта.
Однако, несмотря на столь мощный штурм, до сих пор не предложено модели искусственного интеллекта, удовлетворяющей возлагавшимся на него ожиданиям. Видимо, главными причинами этого являются три обстоятельства: неизбежная субъективность человеческих знаний, ограниченные возможности информационного подхода в психологии и недостаточная ясность в науке с категорией «интеллект». Первая причина есть глобальная проблема науки: какова степень объективности (иначе, «истинности») наших знаний, добытых с помощью психического отражения? Как остроумно замечают некоторые ученые, «в действительности все выглядит иначе, чем на самом деле» [75, с. 16]. Вопрос этот в моделировании обостряется вдвойне, поскольку любая модель является некоторым приближением к нашим представлениям об изучаемом объекте. Иначе говоря, модель по отношению к прототипу выступает аналогом второго порядка, т. е. аналогом нашего субъективного аналога-образа. Дело усугубляется и одним из основных принципов моделирования – упрощением. «Модель нельзя сконструировать без упрощающих допущений» [94, с. 125].
Что касается второй причины слабой разработанности искусственного интеллекта, то уже отмечалось, что ни информационный подход в целом, ни его компьютерные реализации в полной мере не могут ни описать, ни воспроизвести высшие психические функции человека (мышление, воображение, волю, чувства) ни по отдельности, ни тем более в их единстве, что присуще психической деятельности человека. Особенно на этом настаивают психологи, не устающие указывать на исключительную сложность и уникальность предмета психологии. Так, Н. М. Амосов считал, что психологические понятия «мышление», «вера», «долг», «совесть» «непригодны для моделирования» [5, с. 5]. О. К. Тихомиров уверен, что «преимущество психологических понятий состоит в том, что они фиксируют более сложные стороны реальности; такие, от которых абстрагируется «автоматный» подход» [145, с. 20]. И, несмотря на изменения содержания понятия «искусственный интеллект» [50, 93] и приложение к нему самых современных информационных теорий (например, теории фреймов) [108,146] и использование самых разнообразных и совершенных методов компьютерного моделирования (например, МЛСУ – метод линейных структурных уравнений) [94, 95, 143, 370], искусственной модели, сопоставимой с интеллектом человека, получить не удается. Такое положение дел даже побудило некоторых исследователей искать эклектические пути моделирования интеллектуальнной деятельности [64].
Третьим важным фактором, препятствующим построению удовлетворительного искусственного
Совершенно оригинальное но в принципе характерное для этого подхода решение предложил
Н. И. Кобозев [157]. Он обращается не просто к нервному субстрату психики, а к атомно-мо- лекулярному уровню организации нервной системы и организма в целом. Раз организм человека состоит из атомов и молекул, а психическая деятельность предопределена работой организма, то и механизмы психической деятельности должны быть сложены из атомов и молекул. Этот посыл позволяет анализировать процесс мышления с позиций термодинамики. Одной из характеристик любой молекулярно-кинетической системы является наличие в ней самопроизвольных процессов, переводящих систему во все более устойчивое состояние. Мерой этих переходов из состояния в состояние выступает энтропия. Далее Н. И. Кобозев доказывает, что логическое мышление является именно таким самопроизвольным процессом,
но
в котором отсутствует неупорядоченность, т. е. энтропия равна нулю. Но это противоречит законам термодинамики, поскольку при этом температура тела мыслящего человека должна была бы равняться абсолютному нулю. Таким образом, считает Н. И. Кобозев, мышление как однозначное логическое суждение – единственное естественное явление, приводящее к конечному идеальному результату – безэнтропийному состоянию. Отсюда делается вывод, что мышление осуществляется при помощи не обычных молекулярных механизмов, а при помощи либо специальных субатомных механизмов (и надо найти соответствующие нейтральные частицы), либо сверхмолекулярных механизмов, присущих неизвестным пока свойствам биологических форм движения материи. Версия Н. И. Кобозева – хороший пример того, как процесс
моделирования может изменять наши представления об объекте-прототипе.
Дальнейшее развитие моделирования мышления, а шире – познавательных возможностей человека, приводит к формированию самостоятельного направления в науке – моделированию
искусственного интеллекта. Объем разработок здесь невообразимо велик. Как замечает один из авторитетных специалистов в этой области П. Уинстон, «идеи и модели появляются почти ежемесячно» [374, с. 6]. С 1969 года регулярно проходят международные конференции по проблемам искусственного интеллекта.
Однако, несмотря на столь мощный штурм, до сих пор не предложено модели искусственного интеллекта, удовлетворяющей возлагавшимся на него ожиданиям. Видимо, главными причинами этого являются три обстоятельства: неизбежная субъективность человеческих знаний, ограниченные возможности информационного подхода в психологии и недостаточная ясность в науке с категорией «интеллект». Первая причина есть глобальная проблема науки: какова степень объективности (иначе, «истинности») наших знаний, добытых с помощью психического отражения? Как остроумно замечают некоторые ученые, «в действительности все выглядит иначе, чем на самом деле» [75, с. 16]. Вопрос этот в моделировании обостряется вдвойне, поскольку любая модель является некоторым приближением к нашим представлениям об изучаемом объекте. Иначе говоря, модель по отношению к прототипу выступает аналогом второго порядка, т. е. аналогом нашего субъективного аналога-образа. Дело усугубляется и одним из основных принципов моделирования – упрощением. «Модель нельзя сконструировать без упрощающих допущений» [94, с. 125].
Что касается второй причины слабой разработанности искусственного интеллекта, то уже отмечалось, что ни информационный подход в целом, ни его компьютерные реализации в полной мере не могут ни описать, ни воспроизвести высшие психические функции человека (мышление, воображение, волю, чувства) ни по отдельности, ни тем более в их единстве, что присуще психической деятельности человека. Особенно на этом настаивают психологи, не устающие указывать на исключительную сложность и уникальность предмета психологии. Так, Н. М. Амосов считал, что психологические понятия «мышление», «вера», «долг», «совесть» «непригодны для моделирования» [5, с. 5]. О. К. Тихомиров уверен, что «преимущество психологических понятий состоит в том, что они фиксируют более сложные стороны реальности; такие, от которых абстрагируется «автоматный» подход» [145, с. 20]. И, несмотря на изменения содержания понятия «искусственный интеллект» [50, 93] и приложение к нему самых современных информационных теорий (например, теории фреймов) [108,146] и использование самых разнообразных и совершенных методов компьютерного моделирования (например, МЛСУ – метод линейных структурных уравнений) [94, 95, 143, 370], искусственной модели, сопоставимой с интеллектом человека, получить не удается. Такое положение дел даже побудило некоторых исследователей искать эклектические пути моделирования интеллектуальнной деятельности [64].
Третьим важным фактором, препятствующим построению удовлетворительного искусственного
интеллекта, выступает слабая разработанность в психологической науке процессов мышления и воображения, а соответственно и феноменов интеллекта и креативности. На этот факт указывают как сами психологи, так и специалисты из других областей знания, занимающиеся моделированием психики. Для иллюстрации достаточно привести высказывание Л. М. Веккера:
«Дальнейшее движение вперед в области разработки «искусственного интеллекта» упирается в состояние психологической теории естественного интеллекта» [ 142, с. 196]. А это состояние наглядно характеризуется сакраментальным вопросом, поставленным одним из ведущих специалистов в этой области – М. А. Холодной: «Существуетли интеллект как психологическая реальность?» [396, 397].
Для более подробного и глубокого знакомства с проблемой искусственного интеллекта отсылаем читателя к наиболее полным обзорным и обобщающим работам отечественных и зарубежных авторов [50, 198, 232, 257, 348, 374, 393,423].
Что касается моделирования регуляционных процессов психики (эмоций, чувств, воли, мотивации и др.), то здесь достижения скромнее, нежели в моделировании когнитивных процессов. Тем не менее известны многочисленные попытки смоделировать эмоциональную сферу человека. Однако особых успехов констатировать не приходится. Скорее всего это объясняется сугубой субъективностью аффективных явлений, в которых компонент переживания
(субъективная сторона психического) значительно преобладает над компонентом знания
(объективная сторона психического). Переживательная составляющая эмоций и чувств, видимо, очень плохо поддается формализации и не вписывается в информационные модели. В нашей стране наиболее плодотворные разработки в этой сфере связаны с именем В. С. Старинца [7,
357].
Несколько большего добились ученые в моделировании мотивации, которое идет рука об руку с моделированием эмоций и других проявлений личности. Однако «пока не известны успешно функционирующие модели этого явления» [47, с. 222]. Тем не менее упомянем модели
Ф. Джорджа и К. Прибрама. Ф. Джордж толковал мотивацию как метод, с помощью которого отбирается данный способ поведения из множества возможных. В кибернетическом моделировании это связано с выбором характеристики «положительности» и отказом от характеристики «отрицательности». Как писал Ф. Джордж, «все события, происходящие с машиной в течение ее «жизни», постепенно из нейтральных будут становиться либо положительными, либо отрицательными» [ 108, с. 250], Модель К. Прибрама увязывает мотивированное поведение с нейрофизиологическими структурами.
Так, психически переживаемая боль, по К. Прибраму, это внезапное и быстрое увеличение кортикального катексиса, за которым стоит местное распространяющееся возбуждение, приводящее к распространяющемуся импульсному возбуждению [299].
От моделирования мотиваций и эмоций рукой подать и до моделирования личности. Но здесь к тем же ограничениям возможностей компьютерного моделирования, что характерны для регуляционной сферы психики, добавляются сложности, связанные с неизмеримо большей сложностью феномена личности как высшего интегратора всех психических явлений и с неоднозначностью понятия «личность» в науке. Несмотря на это, попытки создания действующих моделей личности предпринимались.
Самой знаменитой среди них является модель Дж. Лоулина [200,457], названная ее создателем «Личность Олдос» в честь известного английского писателя Олдоса Хаксли, художественное творчество которого посвящено проблемам человеческой личности и межличностным отношениям. Программа Олдоса состоит из 750 команд, реагирующих на вводимые в ЭВМ данные-ситуации. Ситуации различаются по виду и по последствиям для
Олдоса, что зашифровано в семизначном коде данных. В каждой ситуации Олдос ведет себя в зависимости от «настроения» и «накопленного опыта». «Действия» личности объективизируются на печатающем устройстве в виде цифровых кодов. «Настроение» Олдоса определяется видом и силой «эмоций». Их у него три: положительная – «желание» и две отрицательных – «страх» и
«гнев». В зависимости от преобладания той или иной «эмоции» Олдос «приближается»,
«удаляется» или «нападает». Причем при уменьшении интенсивности «эмоции» его «действия» замедляются вплоть до их прекращения. В «настроении» суммируются эмоции остаточные
(вызванные предшествующей ситуацией) и те, которые зависят от характера его «воспоминаний» о последствиях предъявленной ситуации. От суммарной эмоции и зависят его реакции. Если же в итоге ни одна из трех видов эмоций не возобладает, то возникает конфликт. В зависимости от очередных последствий определенных ситуаций у Олдоса могут меняться «взгляды» на нее, выработанные ранее, а, следовательно, при последующих предъявлениях такой же ситуации его решения могут быть иными, чем прежде.
Кроме «действий» Олдос может реагировать оценкой, «мнением» на те или иные
«Дальнейшее движение вперед в области разработки «искусственного интеллекта» упирается в состояние психологической теории естественного интеллекта» [ 142, с. 196]. А это состояние наглядно характеризуется сакраментальным вопросом, поставленным одним из ведущих специалистов в этой области – М. А. Холодной: «Существуетли интеллект как психологическая реальность?» [396, 397].
Для более подробного и глубокого знакомства с проблемой искусственного интеллекта отсылаем читателя к наиболее полным обзорным и обобщающим работам отечественных и зарубежных авторов [50, 198, 232, 257, 348, 374, 393,423].
Что касается моделирования регуляционных процессов психики (эмоций, чувств, воли, мотивации и др.), то здесь достижения скромнее, нежели в моделировании когнитивных процессов. Тем не менее известны многочисленные попытки смоделировать эмоциональную сферу человека. Однако особых успехов констатировать не приходится. Скорее всего это объясняется сугубой субъективностью аффективных явлений, в которых компонент переживания
(субъективная сторона психического) значительно преобладает над компонентом знания
(объективная сторона психического). Переживательная составляющая эмоций и чувств, видимо, очень плохо поддается формализации и не вписывается в информационные модели. В нашей стране наиболее плодотворные разработки в этой сфере связаны с именем В. С. Старинца [7,
357].
Несколько большего добились ученые в моделировании мотивации, которое идет рука об руку с моделированием эмоций и других проявлений личности. Однако «пока не известны успешно функционирующие модели этого явления» [47, с. 222]. Тем не менее упомянем модели
Ф. Джорджа и К. Прибрама. Ф. Джордж толковал мотивацию как метод, с помощью которого отбирается данный способ поведения из множества возможных. В кибернетическом моделировании это связано с выбором характеристики «положительности» и отказом от характеристики «отрицательности». Как писал Ф. Джордж, «все события, происходящие с машиной в течение ее «жизни», постепенно из нейтральных будут становиться либо положительными, либо отрицательными» [ 108, с. 250], Модель К. Прибрама увязывает мотивированное поведение с нейрофизиологическими структурами.
Так, психически переживаемая боль, по К. Прибраму, это внезапное и быстрое увеличение кортикального катексиса, за которым стоит местное распространяющееся возбуждение, приводящее к распространяющемуся импульсному возбуждению [299].
От моделирования мотиваций и эмоций рукой подать и до моделирования личности. Но здесь к тем же ограничениям возможностей компьютерного моделирования, что характерны для регуляционной сферы психики, добавляются сложности, связанные с неизмеримо большей сложностью феномена личности как высшего интегратора всех психических явлений и с неоднозначностью понятия «личность» в науке. Несмотря на это, попытки создания действующих моделей личности предпринимались.
Самой знаменитой среди них является модель Дж. Лоулина [200,457], названная ее создателем «Личность Олдос» в честь известного английского писателя Олдоса Хаксли, художественное творчество которого посвящено проблемам человеческой личности и межличностным отношениям. Программа Олдоса состоит из 750 команд, реагирующих на вводимые в ЭВМ данные-ситуации. Ситуации различаются по виду и по последствиям для
Олдоса, что зашифровано в семизначном коде данных. В каждой ситуации Олдос ведет себя в зависимости от «настроения» и «накопленного опыта». «Действия» личности объективизируются на печатающем устройстве в виде цифровых кодов. «Настроение» Олдоса определяется видом и силой «эмоций». Их у него три: положительная – «желание» и две отрицательных – «страх» и
«гнев». В зависимости от преобладания той или иной «эмоции» Олдос «приближается»,
«удаляется» или «нападает». Причем при уменьшении интенсивности «эмоции» его «действия» замедляются вплоть до их прекращения. В «настроении» суммируются эмоции остаточные
(вызванные предшествующей ситуацией) и те, которые зависят от характера его «воспоминаний» о последствиях предъявленной ситуации. От суммарной эмоции и зависят его реакции. Если же в итоге ни одна из трех видов эмоций не возобладает, то возникает конфликт. В зависимости от очередных последствий определенных ситуаций у Олдоса могут меняться «взгляды» на нее, выработанные ранее, а, следовательно, при последующих предъявлениях такой же ситуации его решения могут быть иными, чем прежде.
Кроме «действий» Олдос может реагировать оценкой, «мнением» на те или иные
предъявления, что характеризует его как «личность» со своим «характером».
Лоулин проверял на своей модели влияние на развитие личности «средовых» и
«врожденных» факторов. Так, он «воспитывал» одного Олдоса в дружественной среде, а другого
– во враждебных ситуациях, сравнивал Олдосов с разным по числу ситуаций «жизненным опытом». Изменяя некоторые исходные характеристики «нормального» Олдоса, Лоулин сравнивал поведение «решительного» и «нерешительного» Олдосов.
Подводя итоги моделирования физиологических основ психики, следует воздать должное энтузиазму, дерзости мысли и творческой плодовитости исследователей. Результаты их работы кардинально повлияли на развитие техники XX столетия. Но о сущности человеческой души, увы, знаний не добавили.
14.5.1.3. Моделирование психологических механизмов
Руководствуясь приведенным выше определением психологических механизмов, отнесем к данному направлению все работы, дающие в том или ином виде описание любых психических явлений и любых форм и уровней психологической организации животных, человека и социальных групп. И тогда любые умозрительные построения и любые теоретические
обобщения эмпирического материала, известные психологической науке, выступают
психологическими моделями психики или ее проявлений. Эмпирический материал поставляет психологическое моделирование и естественное наблюдение.
Указанные модели презентируются через описания в знаковой форме. По характеру воспроизводимых сторон психики это преимущественно структурные и смешанные модели, реже
– функциональные. Соответствующие примеры уже приводились выше.
Благодаря научной деятельности именно в этом направлении, современная психология подразделила все психические явления натри разряда: процессы, состояния и свойства. Правда, известны предложения ввести четвертый разряд – психические конструкты, куда должны быть включены такие психические явления, как образы, понятия, мотивы и другие образования, являющиеся как бы итогом протекания психических процессов или состояний [136 и др]. Именно этот вид моделирования позволил выделить три функциональных сферы психики со своими специфическими процессами, состояниями, свойствами и конструктами: познавательную
(когнитивную), регуляционную и интеграционную [80,81,242,247,251]. В рамках именно этого вида исследовательской деятельности и формулируются определения всех психических явлений от сенсорного порога до сознания, личности и деятельности. В конечном итоге именно этот вид научных изысканий формализует представления ученых о психической организации человека в виде разнообразных теорий личности и социально-психологического устройства общества.
14.5.2. Психологическое моделирование
Психологическое моделирование заключается в искусственном создании специальных условий, провоцирующих нужные по задаче исследования (обследования, обучения) ответные реакции, действия или отношения естественных носителей психики (людей или животных). Иначе говоря, исследователь в зависимости от предмета и задач исследования создает для изучаемого объекта специфическую психогенную ситуацию, в результате чего моделируется его поведение
(для человека в форме деятельности и общения).
Сопоставляя исходные условия психогенной ситуации с параметрами поведения объекта, можно, во-первых, получать косвенные данные об организации и работе психики, которые могут быть использованы для ее изучения и моделирования, во-вторых, выявлять корреляционные, причинно-следственные, а иногда и функциональные связи между психогенными воздействиями и особенностями поведения, что дает основания для выведения психологических закономерностей, и, в-третьих, разрабатывать эффективные приемы воздействия на людей с целью оказания им психологической помощи.
Основные особенности психологического моделирования
1. Естественные объект и предмет исследования – люди (животные) и их психика.
2. Искусственность условий исследования (например, экспериментальная лаборатория, диагностический центр, психотерапевтический кабинет).
3. Применение моделирующих средств – методических пособий (например, инструкций, анкет, стимулького материала), технических устройств (например, экспонирующегооборудования, измерительной аппаратуры) или фармакологических средств (например, барбитуратов в некоторыхвидах психотерапевтических воздействий или психоделиков в трансперсональной психологии).
4. Целенаправленность воздействий на объект.
Лоулин проверял на своей модели влияние на развитие личности «средовых» и
«врожденных» факторов. Так, он «воспитывал» одного Олдоса в дружественной среде, а другого
– во враждебных ситуациях, сравнивал Олдосов с разным по числу ситуаций «жизненным опытом». Изменяя некоторые исходные характеристики «нормального» Олдоса, Лоулин сравнивал поведение «решительного» и «нерешительного» Олдосов.
Подводя итоги моделирования физиологических основ психики, следует воздать должное энтузиазму, дерзости мысли и творческой плодовитости исследователей. Результаты их работы кардинально повлияли на развитие техники XX столетия. Но о сущности человеческой души, увы, знаний не добавили.
14.5.1.3. Моделирование психологических механизмов
Руководствуясь приведенным выше определением психологических механизмов, отнесем к данному направлению все работы, дающие в том или ином виде описание любых психических явлений и любых форм и уровней психологической организации животных, человека и социальных групп. И тогда любые умозрительные построения и любые теоретические
обобщения эмпирического материала, известные психологической науке, выступают
психологическими моделями психики или ее проявлений. Эмпирический материал поставляет психологическое моделирование и естественное наблюдение.
Указанные модели презентируются через описания в знаковой форме. По характеру воспроизводимых сторон психики это преимущественно структурные и смешанные модели, реже
– функциональные. Соответствующие примеры уже приводились выше.
Благодаря научной деятельности именно в этом направлении, современная психология подразделила все психические явления натри разряда: процессы, состояния и свойства. Правда, известны предложения ввести четвертый разряд – психические конструкты, куда должны быть включены такие психические явления, как образы, понятия, мотивы и другие образования, являющиеся как бы итогом протекания психических процессов или состояний [136 и др]. Именно этот вид моделирования позволил выделить три функциональных сферы психики со своими специфическими процессами, состояниями, свойствами и конструктами: познавательную
(когнитивную), регуляционную и интеграционную [80,81,242,247,251]. В рамках именно этого вида исследовательской деятельности и формулируются определения всех психических явлений от сенсорного порога до сознания, личности и деятельности. В конечном итоге именно этот вид научных изысканий формализует представления ученых о психической организации человека в виде разнообразных теорий личности и социально-психологического устройства общества.
14.5.2. Психологическое моделирование
Психологическое моделирование заключается в искусственном создании специальных условий, провоцирующих нужные по задаче исследования (обследования, обучения) ответные реакции, действия или отношения естественных носителей психики (людей или животных). Иначе говоря, исследователь в зависимости от предмета и задач исследования создает для изучаемого объекта специфическую психогенную ситуацию, в результате чего моделируется его поведение
(для человека в форме деятельности и общения).
Сопоставляя исходные условия психогенной ситуации с параметрами поведения объекта, можно, во-первых, получать косвенные данные об организации и работе психики, которые могут быть использованы для ее изучения и моделирования, во-вторых, выявлять корреляционные, причинно-следственные, а иногда и функциональные связи между психогенными воздействиями и особенностями поведения, что дает основания для выведения психологических закономерностей, и, в-третьих, разрабатывать эффективные приемы воздействия на людей с целью оказания им психологической помощи.
Основные особенности психологического моделирования
1. Естественные объект и предмет исследования – люди (животные) и их психика.
2. Искусственность условий исследования (например, экспериментальная лаборатория, диагностический центр, психотерапевтический кабинет).
3. Применение моделирующих средств – методических пособий (например, инструкций, анкет, стимулького материала), технических устройств (например, экспонирующегооборудования, измерительной аппаратуры) или фармакологических средств (например, барбитуратов в некоторыхвидах психотерапевтических воздействий или психоделиков в трансперсональной психологии).
4. Целенаправленность воздействий на объект.
5. Гуманизация воздействий.
6. Программирование процедуры воздействий (от минимума регламентации при свободной беседе до максимума при тестировании или лабораторном эксперименте). 7. Регистрация воздействующих (ситуационных и процедурных) факторов и ответов объекта изучения.
Сформировать психогенную ситуацию можно с помощью любого эмпирического метода психологии вплоть до спровоцированного наблюдения и интроспекции. Наиболее характерны в этом отношении, безусловно,
лабораторный
эксперимент,
тестирование,
психофизиологические и психотерапевтические методы.
Психологическое моделирование является неотъемлемой формой всех видов психологической работы: исследования, диагностики, консультирования, коррекции. В психотерапевтической практике именно сами психогенные ситуации зачастую выступают инструментом оказания психологической помощи. Классический пример тому – психодрама, где, собственно, сценическое действо должно приводить к терапевтическому эффекту (катарсису).
Специфическим видом психологического моделирования являются психотренинги. В них особенно ярко представлены все перечисленные выше признаки этого направления.
1 ... 22 23 24 25 26 27 28 29 ... 35