Файл: Сырье. Классификация сырья. Региональное распределение основных сырьевых источников.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 187

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Инерционное разделение осуществляется в гид­роциклонах, принцип действия которых аналоги­чен циклонам для очистки газов. Различают откры­тые и напорные гидроциклоны, причем первые имеют большую производительность и малые по­тери напора, но проигрывают в эффективности очистки (особенно от мелких частиц).

Фильтрование осуществляется чаще всего че­рез пористые связанные или несвязанные мате­риалы. Как правило, фильтры очищают воду от тонкодисперсных примесей даже при небольших концентрациях. Фильтроматериалы достаточно разнообразны: кварцевый песок, гравий, антрацит, частички металлов и др. Песчаные фильтры - основные очистители при водоподготовке. Нефтеловушки в самом простом исполнении представляют собой отстойники, в которых вы­ход очищенной воды происходит снизу, а нефтя­ная пленка собирается сверху.

Физико-химическая очистка обеспечивает отделение как твердых и взвешенных частиц, так и растворенных примесей. Она включает множе­ство разных способов, важнейшими из которых являются экстракция, флотация, нейтрализация, окисление, сорбция, коагуляция, ионообменные методы.

Экстракция - процесс разделения примесей в смеси двух нерастворимых жидкостей (экстрагента и сточной воды). Например, в специальных колонках (пустотелых.или заполненных насад­ками) стоки смешиваются с экстрагентом, отбира­ющим вредные вещества: так бензолом удаляет­ся фенол.

Флотация - процесс всплывания примесей (чаще всего маслопродуктов) при обволакивании их пу­зырьками воздуха, подаваемого в сточную воду. В некоторых случаях между пузырьками и приме­сями происходит реакция. Разновидность мето­да - электрофлотация, при которой вода дополни­тельно обеззараживается за счет окислительно-восстановительных процессов у электродов.

Нейтрализация - обработка воды щелочами или кислотами, известью, содой, аммиаком и т. п. с це­лью обеспечения заданной величины водородного показателя рН. Самый простой способ нейтрализа­ции сточных вод - смешение кислых и щелочных стоков, если они имеются на предприятии.

Окисление - применяется как при водоподготовке, так и при обработке сточных вод для обез­зараживания воды и уничтожения токсичных биологических примесей. Наиболее распростра­ненный способ - хлорирование - чреват, как указывалось ранее, появлением диоксинов (осо­бенно при вынужденном повышении дозы хлора летом или в период паводка, так называемом ги­перхлорировании). Необходимо постепенно пере­ходить на другие способы, например, на комбина­цию озонирование и хлорирование. Озо­нирование - дорого и более кратковременного действия, но оно перспективнее. В настоящее время отрабатываются комбинации реагентов с ультра­фиолетовой обработкой воды.


Сорбция, как и при обработке газовых выбросов, способна обеспечивать эффективную очистку воды от солей тяжелых металлов, непредельных угле­водородов, частичек красящих веществ. Лучшим сорбентом и здесь является активиро­ванный уголь, это относится и к различным ми­нералам (шунгиту, цеолиту и др.), специально обработанным опилкам, саже, частичкам титана и др. На этих сорбентах работают многие быто­вые фильтры для воды: «Родничок», «Роса».

Коагуляция - обработка воды специальными реагентами с целью удаления нежелательных растворенных примесей. Широко распростране­на при водоподготовке. Обработка ведется соеди­нениями алюминия или железа, при этом обра­зуются твердые нерастворимые примеси, отделяемые обычными способами. Для сточных вод ши­роко применяется электрокоагуляция, при кото­рой вблизи электродов образуются ионы (резуль­тат анодного растворения материала электродов), реагирующие с примесями. Так отделяют тяже­лые металлы, цианы и др.

Ионообменные методы достаточно эффектив­ны для очистки от многих растворов и даже от тяжелых металлов. Очистка производится син­тетической ионообменной смолой и, если ей пред­шествует механическая очистка, позволяет полу­чить выделенные из воды металлы в виде срав­нительно чистых концентрированных солей.

так, к слову:

В последнее время за рубежом (особенно для водоподготовки) используют установки обрат­ного осмоса. В них вода продавливается через набор специальных микропленок при высоком давле­нии (до 30 МПа). Эти установки чрезвычайно эффективны в качестве последних ступеней (т. е. для тонкой очистки). Но они достаточно дороги и энергоемки.

Биологическая очистка возможна в естествен­ных условиях и в искусственных сооружениях. И в том, и в другом случае органические примеси обрабатываются редуцентами (бактериями, про­стейшими, водорослями) и превращаются в минеральные вещества. В естественных усло­виях очистка производится на полях фильтра­ции или орошения (через почву) или в биологи­ческих прудах. Последние могут быть с подду­вом воздуха (с искусственной аэрацией). В качестве искусственных сооружений могут применяться аэротенки, окситенки, метатенки и биофильтры. В тенках (аэро- с подачей воздуха; окси- с пода­чей кислорода; мета- без доступа воздуха) сточ­ные воды обрабатываются микроорганизмами. Но для их нормального функционирования необхо­димы определенные условия по температуре, рН и отсутствию многих солей. Поэтому разновид­ности этих сооружений чаще всего применяются на тех очистных сооружениях канализации, куда не поступают промстоки.

На промышленных очи­стных сооружениях чаще применяются биофиль­тры, в которых активная биологическая среда образуется на специальной загрузке (шлак, ке­рамзит, гравий). Эта биологическая среда (пленка) менее чувствительна к колебаниям па­раметров среды и сточных вод. Активность био­пленки увеличивается при поддуве воздуха, пода­ваемого обычно противотоком.

Выбор способов очистки и обеззараживания воды зависит от многих параметров и требований, важ­нейшие из которых: необходимая степень очист­ки и исходная загрязненность воды, потребные расходы и время очистки, наличие очистителей и энергии и, конечно, экономические возможности. Но при всех методах очистки следует обращать внимание на вопрос утилизации осадка, образую­щегося при обработке воды (особенно токсичных промстоков). Как правило, осадок обезво­живается и вывозится на специальные полиго­ны для захоронения. Или обрабатывается в биологических сооружениях. Достаточно эффективны для переработки осадков (в том числе токсичных) некоторые рас­тения типа гиацинтов, тростника. Суще­ствуют специальные печи для сжигания токсич­ных отходов с очень высокой полнотой сгорания (за счет создания взвешенного слоя сгорающего вещества, тангенциальной подачи топлива), и четырехступенчатой очисткой газовых выбросов (печи канадско-американской фирмы профессора Ормстона). Есть и отечественные разработки по сжи­ганию этого осадка в металлургических, специаль­но оборудованных печах с получением сравнительно безвредного строительного материала.

11. Методы умягчения воды. Пути предотвращения и устранения накипей.

Умягчение воды

  • реагентный метод - путем введения реагентов, способствующих образованию малорастворимых соединений кальция и магния и выпадению их в осадок;

  • катионовый метод, при котором умягчаемая вода фильтруется через вещества, обладающие способностью обменивать содержащиеся в них катионы (натрия или водорода) на катионы кальция и магния, растворенный в воде солей. А результате обмена задерживаются ионы кальция и магния и образуются натриевые соли, не придающие воде жесткость;

  • термический метод, заключающийся в нагревании воды до температуры выше 100°, при этом почти полностью удаляются соли карбонатной жесткости.

Часто методы умягчения применяют комбинированно. Например, часть солей жесткости удаляют реагентным способом, а оставшуюся часть с помощью катионного обмена. Из реагентных методов содово-известковый способ умягчения является наиболее распространенным. Сущность его сводится к получению вместо растворенных в воде солей Са Mg нерастворимых солей СаСО3 и Mg(OH)2, выпадающих в осадок. Оба реагента - соду Na2CO3 и известь Са(ОН)2 - вводят в умягчаемую воду одновременно или поочередно. Соли карбонатной, временной жесткости удаляют известью, не карбонатной, постоянной жесткости - содой. Химические реакции при удалении карбонатной жесткости протекают следующим образом:


Са(НСО3)2 + Са(ОН)2 = 2СаСО3 + 2Н2О

Гидрат окиси магния Mg(OH)2 коагулирует и выпадает в осадок. Для устранения некарбонатной жесткости в умягчаемую воду вводят Na2CO3. Химические реакции при удалении некарбонатной жесткости следующие:

Na2CO3 + CaSO4 = CaCO3 + Na2SO4;

Na2CO3 + СаС12 = СаСО3 + 2NaCl.

Предотвратить образование можно 2 способами:

  1. Умягчение воды (да ладно)

  2. Противонакипные устройства (вообще их дохуя и много и принципов их работы также множество, вот пример????)

Устройство выпускается в виде генератора, формирующего высокочастотные электромагнитные импульсы. Им управляет микропроцессор. Он посылает сигналы, которые способствуют разрушению ионов солей, растворенных в воде, и их дальнейшей кристаллизации. В результате вода, не меняя своего состава, становится менее жесткой, новый слой отложений не образуется, а ранее сформировавшийся – начинает разрушаться.

Убрать накипь можно следующими способами:


  1. Химическая промывка за счёт циркуляции кислотного или щелочного раствора (Как правило, для химической промывки, используют соляную, серную, ортофосфорную и сульфаминовую кислоты.)

  2. Механическая очистка от накипи (Метод заключается в том, что в очищаемую трубу заводится механическая шарошка (бур, фреза), которая вращается в трубе за счёт электрического или воздушного привода. За счёт механического вращения, острые края шарошки достаточно эффективно счищают слой имеющейся накипи.)

  3. Гидродинамическая очистка от накипи ( Принцип гидродинамической очистки основан на том, что вода, под высоким давлением, подаётся, посредством шланга высокого давления и форсунки, в трубу, что обеспечивает её отмывку от накипи.)


12. Виды энергии, применяемые на химических предприятиях: электрическая, тепловая, механическая, внутриядерная, химическая, световая.

В химической промышленности применяются разнообразные виды энергии (это зависит от характера химико-технологического процесса).

1) Тепловая энергия. Применяется, во-первых, для осуществления разнообразных физических процессов, не сопровождающихся химическими реакциями: плавление, сушка, перегонка и т.п., во-вторых, для нагревания реагентов при проведении химических реакций.

2) Механическая энергия. Применяется для транспортировки сырья и продуктов, для подготовки сырья (дробление, измельчение) и проч.


3) Электрическая энергия. Применяется в основном для превращения ее в механическую, но и используется для проведения электротермических, электрохимических и электромагнитных процессов.

4) Химическая энергия. Проявляется обычно в виде тепла при проведении разнообразных экзотермических реакций, это тепло может быть использовано для превращения в электроэнергию. Химическая энергия преобразуется в электроэнергию в гальванических элементах и аккумуляторах – эти источники энергии представляют большой интерес, т.к. обладают высоким КПД.

5) Световая энергия. Применяется для проведения разнообразных фотохимических реакций, например, синтез хлористого водорода из элементарных веществ или галогенирование органических соединений.

6) Внутриядерная энергия - пользуется для проведения реакций
под действием радиоактивных излучений.
13. Источники энергии, их вклад в энергетику. Классификация энергетических ресурсов



14. Пути и перспективы использования нефти, природного газа и угля в качестве топлива и сырья

В настоящее время основой энергетики являются тепловые электростанции, работающие на органическом топливе (мазут, уголь, газ). Их доля в общем производстве электроэнергии составляет почти 75 %. Однако энергетическая политика страны ориентирована на преимущественное развитие газовой промышленности. Природный газ займет видное место в нашей энергетике. Его широкое использование радикально изменит все экологические характеристики. Будут полностью устранены выбросы в атмосферу оксидов серы и азота. При этом в 2 раза уменьшится загрязненность атмосферы оксидом углерода (II), который порождает "парниковый" эффект на планете. Применение газа на 20—30 % уменьшит по сравнению с углем и даже ядерной энергией затраты на добычу, транспортировку и использование топлива. При этом газ должен заменить нефть, используемую как моторное топливо. Из газа будут получать и жидкое моторное топливо — бензин и керосин. Все это позволит в перспективе повысить удельный вес нефти для синтеза органических веществ.

Энергетическая программа предусматривает создание "щадящей" энергетики, т.е. такой, которая наносит минимальный вред среде обитания человека. В качестве моторного топлива будут широко использоваться водород, метиловый и этиловый спирты. Будут построены электростанции, использующие нетрадиционные виды энергии — солнечную, гидротермальную (энергия горячей воды природных источников) и энергию морских приливов. Что же касается атомных электростанций, то предстоит постоянное наращивание их мощностей на базе безопасных атомных реакторов.