Файл: Учебник для институтов физической культуры Коц Я. М. Оглавление Введение.rtf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 685
Скачиваний: 3
СОДЕРЖАНИЕ
Учебник для институтов физической культуры
Общая физиологическая классификация физических упражнений
Физиологическая классификация спортивных упражнений
Глава 2. Динамика физиологического состояния организма при спортивной деятельности
Предстартовое состояние и разминка
Врабатывание, "мертвая точка", "второе дыхание"
Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)
Физиологические основы мышечной силы
Физиологические основы скоростно-силовых качеств (мощности)
Глава 4. Физиологические основы выносливости
Аэробные возможности организма и выносливость
Кислородтранспортная система и выносливость
Мышечный аппарат и выносливость
Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике
Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков
Спортивная техника и энергетическая экономичность выполнения физических упражнений
Физиологическое обоснование принципов обучения спортивной технике
Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность
Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха
Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха
Тепловая адаптация (акклиматизация)
Спортивная деятельность в условиях пониженной температуры воздуха (холода)
Острые физиологические эффекты пониженного атмосферного давления
Горная акклиматизация (адаптация к высоте)
Спортивная работоспособность в среднегорье и после возвращения на уровень моря
Смена поясно-климатических условий
Максимальное потребление кислорода
Глава 9. Физиологические особенности спортивной тренировки женщин
Зависимость функциональных возможностей организма от размеров тела
Силовые, скоростно-силовые и анаэробные возможности женщин
Менструальный цикл и физическая работоспособность
Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста
Индивидуальное развитие и возрастная периодизация
Возрастные особенности физиологических функций и систем
Развитие движений и формирование двигательных (физических) качеств
Физиологическая характеристика юных спортсменов
Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом
Два основных функциональных эффекта тренировки
Пороговые тренирующие нагрузки
Специфичность тренировочных эффектов
Медленный (лактатный) компонент О2-долга связан со многими факторами. В большой мере он связан с после-рабочим устранением лактата из крови и тканевых жидкостей. Кислород в этом случае используется в окислительных реакциях, обеспечивающих ресинтез гликогена из лактата крови (главным образом, в печени и отчасти в почках) и окисление лактата в сердечной и скелетных мышцах. Кроме того, длительное повышение потребления О2 связано с необходимостью поддерживать усиленную деятельность дыхательной и сердечнососудистой систем в период восстановления, усиленный обмен веществ и другие процессы, которые обусловлены длительно сохраняющейся повышенной активностью симпатической нервной и гормональной систем, повышенной температурой тела, также медленно снижающимися на протяжении периода восстановления.
Восстановление запасов кислорода. Кислород находится в мышцах в форме химической связи с миоглобином. Эти запасы очень невелики: каждый килограмм мышечной массы содержит около 11 мл О2. Следовательно, общие запасы "мышечного" кислорода (из расчета на 40 кг мышечной массы у спортсменов) не превышают 0,5 л. В процессе мышечной работы он может быстро расходоваться, а после работы быстро восстанавливаться. Скорость восстановления запасов кислорода зависит лишь от доставки его к мышцам.
Сразу после прекращения работы артериальная кровь, проходящая через мышцы, имеет высокое парциальное напряжение (содержание) О2, так что восстановление О2-миоглобина происходит, вероятно, за несколько секунд. Расходуемый при этом кислород составляет некоторую часть быстрой фракции кислородного долга, в которую входит также небольшой объем О2 (до 0,2 л), идущий, на восполнение нормального содержания его в венозной крови.
Таким образом, уже через несколько секунд после прекращения работы кислородные "запасы" в мышцах и крови восстанавливаются. Парциальное напряжение О2 в альвеолярном воздухе и в артериальной крови не только достигает предрабочего уровня, но и превышает его. Быстро восстанавливается также содержание О
2 в венозной крови, оттекающей от работавших мышц и других активных .органов и тканей тела, что указывает на достаточное их обеспечение кислородом в послерабочий период. Поэтому нет никаких физиологических оснований использовать дыхание чистым кислородом или смесью с повышенным содержанием кислорода после работы для ускорения процессов восстановления.
Восстановление фосфагенов (АТФ и КрФ)
Фосфагены, особенно АТФ, восстанавливаются очень быстро (рис. 25). Уже на протяжении 30 с после прекращения работы восстанавливается до 70% израсходованных фосфагенов, а их полное восполнение заканчивается за несколько минут, причем почти исключительно за счет энергии аэробного метаболизма, т. е. благодаря кислороду, потребляемому в быструю фазу О2-долга. Действительно, если сразу после работы жгутировать работающую конечность и таким образом лишить мышцы кислорода, доставляемого с кровью, то восстановление КрФ не произойдет.
Чем больше расход фосфагенов за время работы, тем больше требуется О2 для их восстановления (для восстановления 1 моля АТФ необходимо 3,45 л О2). Величина быстрой (алактатной) фракции О2-долга прямо связана со степенью снижения фосфагенов в мышцах к концу работы. Поэтому данная величина указывает на количество израсходованных в процессе работы фосфагенов.
У нетренированных мужчин максимальная величина быстрой фракции О2-долга достигает 2-3 л. Особенно большие величины этого показателя зарегистрированы у представителей скоростно-силовых видов спорта (до 7 л у высококвалифицированных спортсменов). В этих видах спорта содержание фосфагенов и скорость их расходования в мышцах прямо определяют максимальную и поддерживаемую (дистанционную) мощность упражнения.
Восстановление гликогена. По первоначальным представлениям Р. Маргария и др. (1933), израсходованный за время работы гликоген ресинтезируется из молочной кислоты на протяжении 1-2 ч после работы. Расходуемый в этот период восстановления кислород определяет вторую, медленную, или лактатную, фракцию О2-Долга. Однако в настоящее время установлено, что восстановление гликогена в мышцах может длиться до 2-3 дней
Скорость восстановления гликогена и количество его восстанавливаемых запасов в мышцах и печени зависит от двух основных факторов: степени расходования гликогена в процессе работы и характера пищевого рациона в период восстановления. После очень значительного (более 3/4 исходного содержания), вплоть до полного, истощения гликогена в рабочих мышцах его восстановление в первые часы при обычном питании идет очень медленно, и для достижения предрабочего уровня требуется до 2 суток. При пищевом рационе с высоким содержанием углеводов (более 70% суточного калоража) этот процесс ускоряется - уже за первые 10 ч в рабочих мышцах восстанавливается более половины гликогена, к концу суток происходит его полное восстановление, а в печени содержание гликогена значительно превышает обычное. В дальнейшем количество гликогена в рабочих мышцах и в.печени продолжает увеличиваться и через 2-3 суток после "истощающей" нагрузки может превышать предрабочее в 1,5-3 раза - феномен суперкомпенсации.
При ежедневных интенсивных и длительных тренировочных занятиях содержание гликогена в рабочих мышцах и печени существенно снижается ото дня ко дню, так как при обычном пищевом рационе даже суточного перерыва между тренировками недостаточно для полного восстановления гликогена. Увеличение содержания углеводов в пищевом рационе спортсмена может обеспечить полное восстановление углеводных ресурсов организма к следующему тренировочному занятию.
Устранение молочной кислоты. В период восстановления происходит устранение молочной кислоты из рабочих мышц, крови и тканевой жидкости, причем тем быстрее, чем меньше образовалось молочной кислоты во время работы. Важную роль играет также послерабочий режим. Так, после максимальной нагрузки для полного устранения накопившейся молочной кислоты требуется 60-90 мин в условиях полного покоя - сидя или лежа (пассивное восстановление). Однако, если после такой нагрузки выполняется легкая работа (активное восстановление), то устранение молочной Кислоты происходит значительно быстрее. У нетренированных людей оптимальная интенсивность "восстанавливающей" нагрузки - примерно 30-45% от МПК (например, бег трусцой), а. у хорошо тренированных спортсменов - 50-60% от МПК, общей продолжительностью примерно 20 мин.
Существует четыре основных пути устранения молочной кислоты:
1) окисление до СО2 и ШО (так устраняется примерно 70% всей накопленной молочной кислоты);
2) превращение в гликоген (в мышцах и печени) и в глюкозу (в печени) около 20%;
3) превращение в белки (менее 10%); 4) удаление с мочой и потом (1-2%). При активном восстановлении доля молочной кислоты, устраняемой аэробным путем, увеличивается. Хотя окисление молочной кислоты может происходить в самых разных органах и тканях (скелетных мышцах, мышце сердца, печени, почках и др.), наибольшая ее часть окисляется в скелетных мышцах (особенно их медленных волокнах). Это делает понятным, почему легкая работа (в ней участвуют в основном медленные мышечные волокна) способствует более быстрому устранению лактата после тяжелых нагрузок.
Значительная часть медленной (лактатной) фракции О2-долга связана с устранением молочной кислоты. Чем интенсивнее нагрузка, тем больше эта фракция. У нетренированных людей она достигает максимально 5-10 л, у спортсменов, особенно у представителей скоростно-силовых видов спорта, - 15-20 л. Длительность ее - около часа. Величина и продолжительность лактатной фракции О2-долга уменьшаются при активном восстановлении.
Активный отдых
Характер и длительность восстановительных процессов могут изменяться в зависимости от режима деятельности спортсменов в послерабочий, восстановительный, период. В опытах И. М. Сеченова было показано, что в определенных условиях более быстрое и более значительное восстановление работоспособности обеспечивается не пассивным отдыхом, а переключением на другой вид деятельности, т. е. активным отдыхом. В частности, он обнаружил, что работоспособность руки, утомленной работой на ручном эргографе, восстанавливалась быстрее и полнее, когда период отдыха ее был заполнен работой другой руки. Анализируя этот феномен, И.М. Сеченов предположил, что афферентные импульсы, поступающие во время отдыха от других работающих мышц, способствуют лучшему восстановлению работоспособности нервных центров, как бы заряжая их энергией. Кроме того, работа одной рукой вызывает увеличение кровотока в сосудах другой руки, что также может способствовать более быстрому восстановлению работоспособности утомленных мышц.
Положительный эффект активного отдыха проявляется не только при переключении на работу других мышечных групп, но и при выполнении той же работы, но с меньшей интенсивностью. Например, переход от бега с большой скоростью к бегу трусцой также оказывается эффективным для более быстрого восстановления. Молочная кислота устраняется из крови быстрее при активном отдыхе, т. е. в условиях работы сниженной мощности, чем при пассивном отдыхе. С физиологической точки зрения, положительный эффект заключительной работы невысокой мощности в конце тренировки или после соревнования является проявлением феномена активного отдыха.
Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)
Как уже отмечалось, проявляемая мышечная сила находится в обратной зависимости от скорости движения: чем выше скорость движения, тем меньше проявляемая сила, и наоборот. Разные спортивные упражнения относятся к разным точкам кривой "сила - скорость". Упражнения с внешней нагрузкой, близкой или равной максимальной изометрической мышечной силе, относятся к собственно-лиловым упражнениям. Таковы, например, гимнастические упражнения "стойка на кистях", "крест", "переднее равновесие" на кольцах, тяжелоатлетические упражнения со штангой околомаксимального или максимального веса.
При уменьшении внешнего сопротивления скорость движения возрастает, а проявляемая мышечная сила падает. Упражнения с внешней нагрузкой, равной 40-70% от максимальной изометрической силы, при выполнении которых проявляются относительно большие сила и скорость мышечных сокращений, т. е. большая мощность, относятся к скоростно-силовым упражнениям. Таковы, например, бег на короткие дистанции, прыжки.
В движениях с перемещением малой массы (менее 40% от максимальной изометрической силы) достигается высокая скорость, а проявляемая мышечная сила относительно мала. Такие упражнения относятся к скоростным (например, метание малого мяча с места), движения ненагруженных конечностей).
Границы, разделяющие названные виды" упражнений, очень условны.
Физиологические основы мышечной силы
В условиях изометрического сокращения мышцы проявляют максимальную статическую силу.
Максимальная статическая сила и максимальная произвольная статическая сила мышц
Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение при одновременном выполнении следующих трех условий:
-
активации всех двигательных единиц (мышечных волокон) данной мышцы; -
режиме полного тетануса у всех ее двигательных единиц; -
сокращении мышцы при длине покоя.
В этом случае изометрическое напряжение мышцы соответствует ее максимальной статической силе.
Максимальная сила (МС), развиваемая мышцей, зависит от числа мышечных волокон, составляющих данную мышцу, и от их толщины. Число и толщина