Файл: Учебник для институтов физической культуры Коц Я. М. Оглавление Введение.rtf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 633

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Спортивная физиология

Учебник для институтов физической культуры

Общая физиологическая классификация физических упражнений

Физиологическая классификация спортивных упражнений

Глава 2. Динамика физиологического состояния организма при спортивной деятельности

Предстартовое состояние и разминка

Врабатывание, "мертвая точка", "второе дыхание"

Устойчивое состояние

Утомление

Восстановление

Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)

Физиологические основы мышечной силы

Физиологические основы скоростно-силовых качеств (мощности)

Глава 4. Физиологические основы выносливости

Аэробные возможности организма и выносливость

Кислородтранспортная система и выносливость

Мышечный аппарат и выносливость

Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике

Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков

Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка В сложном нервном механизме формирования двигательных что в и управления ими важное место принадлежит информации, получаемой из внешней среды и от различных частей тела и систем организма.Обратные связи и их роль в формировании и совершенствовании техники движений. Нервная система, вызывая через пусковые двигательные и вегетативные нервы какую-либо деятельность, благодаря наличию обратных связей сразу же начинает получать от управляемых органов (мышц, сердечнососудистой системы и т.д.). А также из внешней среды информацию о совершившемся действии. Сигналы обратных связей, являясь важнейшим фактором корреляции движений, поступают в ЦНС через органы чувств и поэтому называются также сенсорными коррекциями (Н.А. Бернштейн).Различают внутренние обратные связи, которые сигнализируют о характере работы мышц, сердца и других систем организма, и внешние, несущие информацию о деятельности из внешней среды (точность метания, направление движения мяча в футболе, изменение положения тела противника в борьбе и т.д.).Внутренние обратные связи при выполнении физических упраж нений осуществляются преимущественно через двигательную (проприоцептивную), вестибулярную и интероцептивную сенсорные системы, внешние - через зрительную, слуховую и тактильную.Существенное значение для совершенствования техники движений имеет и так называемая сторонняя информация, получаемая от тренера и других лиц в результате наблюдения за Движениями. Помимо наблюдений в настоящее время широко используется различного рода инструментальная техника, гензомет-Рия, электромиография, цикло- или киносъемки, видеомагнитофонные записи и т. д., позволяющие оценивать пространственные и временные параметры двигательного акта. Особую ценность полученные данные имеют тогда, когда эта информация является "срочной", т. е. используется для улучшения "техники движения непосредственно во-время выполнения упражнения, или при последующих повторениях его (В. С. Фарфель).Интеграция в центральной нервной системе афферентных и других факторов, предшествующих программированию движенияДвигательный акт на всех этапах подготовки и выполнения связан с интеграцией в ЦНС афферентных и других факторов. П. К. Анохин выделяет четыре основных фактора: 1) мотивацию, 2) память, 3) обстановочную информацию и 4) пусковую информацию.В трудовой и спортивной деятельности людей особенно большое значение имеют различного рода социально обусловленные виды мотивации. Благодаря следам в нервной системе (памяти) предшествующий опыт оказывает сильнейшее влияние на оценку любых событий и ситуаций. Большую роль в процессе интеграции играет обстановочная информация. Информация об обстановке, поступающая из окружающей среды, и о состоянии различных функций организма является, несомненно, весьма существенным компонентом правильного программирования в ЦНС различных действий.Наконец, существенное значение имеет пусковая направляющая, т. е. сигналы, какими в спорте являются выстрел, звук свистка, движение флажка, команда и др. Однако многие пусковые раздражители" требующие ответных двигательных актов, весьма сложны; они представляют собой не единичный сигнал, а ситуацию определенного характера. Это всегда сильно затрудняет афферентный синтез. Например, в разных Видах единоборства и спортивных игр новые действия нужно начинать многократно. При этом начало и характер ответных движений определяются не каким-либо отдельным сигналом, а всей создавшейся ситуацией, т. е. совокупностью многих (в ряде случаев десятков и даже сотен) раздражителей. При выполнении разных физических упражнений использование информации, получаемой из внутренней и внешней среды путем обратных связей, имеет специфические особенности. При медленном выполнении двигательных актов обратные связи способствуют корригированию данного движения или какой-либо его фазы. При сложных многофазных движениях, которые выполняются быстро (например, гимнастических), обратные связи играют меньшую роль в текущей коррекции в результате недостатка времени. Наконец, при очень кратковременных движениях (в частности, баллистических - метаниях, бросках) обратные связи могут корригировать длительный акт только при его повторениях.Программирование двигательного акта с учетом состояния исполнительных приборовИнтеграция таких факторов, как па

Двигательная память

Автоматизация движений

Спортивная техника и энергетическая экономичность выполнения физических упражнений

Физиологическое обоснование принципов обучения спортивной технике

Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха

Тепловая адаптация (акклиматизация)

Питьевой режим

Спортивная деятельность в условиях пониженной температуры воздуха (холода)

Глава 7. Спортивная работоспособность в условиях пониженного атмосферного давления (среднегорья и при смене поясно-климатических условий

Острые физиологические эффекты пониженного атмосферного давления

Горная акклиматизация (адаптация к высоте)

Спортивная работоспособность в среднегорье и после возвращения на уровень моря

Смена поясно-климатических условий

Глава 8. Физиология плавания

Механические факторы

Максимальное потребление кислорода

Кислород транспортная система

Локальные (мышечные) факторы

Терморегуляция

Глава 9. Физиологические особенности спортивной тренировки женщин

Зависимость функциональных возможностей организма от размеров тела

Силовые, скоростно-силовые и анаэробные возможности женщин

Аэробная работоспособность (выносливость) женщин Максимальное потребление кислорода До периода полового. созревания, когда различия в размерах и составе тела между мальчиками и девочками минимальны, МПК тоже почти одинаково. У молодых мужчин оно в среднем на 20- 30% больше, чем у женщин того же возраста. По мере старения различия в МПК между мужчинами и женщинами становятся меньше (рис.90).Разница между МПК у женщин и мужчин снижается примерно до 15-20%, когда оно приведено к весу тела. В 20-30 лет МПК на 1 кг веса тела у женщин составляет в среднем 35-40 мл/кг*мин, а у мужчин - 45-50 мл/кг*мин. Еще меньше разница" когда МПК относят к весу тощей массы тела, поскольку жировая ткань является метаболически неактивной и почти не потребляет кислорода. Различия в МПК между женщинами и мужчинами практически исчезают, если МПК соотносят с активной мышечной массой.Среди мужчин и женщин одного возраста возможны значительные индивидуальные вариации в величинах МПК. У физически более подготовленных женщин МПК такое же, как у физически менее подготовленных мужчин. В группе не занимающихся спортом величины МПК примерно у 75% женщин совпадают с величинами МПК у 50% мужчин.У спортсменок - представительниц видов спорта на выносливость МПК существенно больше, чем у других спортсменок, а тем более у незанимающихся спортом, как и МПК на 1 кг веса тела (у рядовых спортсменок в среднем 55-60 мл/кг*мин, а у наиболее выдающихся, особенно у лыжниц, - 70- 75 мл/кг*мин). Однако в среднем разница в МПК между спортсменками и спортсменами больше, чем между нетренированными женщинами и мужчинами. МПК, отнесенное к весу тела, у женщин-спортсменок на 20-25% ниже, чем у мужчин-спортсменов (у нетренированных эта разница составляет около 15-2.0%). Даже при отнесении к весу тощей массы тела МПК у ведущих женщин-марафонцев на 8,6% меньше, чем у мужчин (соответственно 76,5 и 96,6 мл/кг*мин). У финских лыжниц и лыжников - членов национальной команды разница составляет в среднем лишь 3,7% (у женщин - 86,4, у мужчин - 89,8% мл/кг тощей массы тела мин).Приведенные данные показывают, что у женщин по сравнению с мужчинами максимальная аэробная производительность (мощность) ниже, что предопределяет и более низкие результаты женщин в видах спорта, требующих проявления выносливости. Это, в частности, объясняет относительное снижение рекордных женских результатов по сравнению с мужскими по мере увеличения дистанции. Максимальные возможности кислород-транспортной системы Более низкое МПК у женщин обусловлено сниженными кисло-родтранспортными возможностями женского организма. Максимальное количество кислорода, которое может транспортироваться артериальной кровью, у женщин меньше, чем у мужчин. Это различие связано с тем, что у женщин меньше объем циркулирующей крови, концентрация гемоглобина в крови, АВР-О2, объем сердца, максимальный сердечный выброс (табл. 24)Таблица 24. Средние показатели крови в покое и при максимальной работе у молодых мужчин и женщин

Менструальный цикл и физическая работоспособность

Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста

Индивидуальное развитие и возрастная периодизация

Возрастные особенности физиологических функций и систем

Развитие движений и формирование двигательных (физических) качеств

Физиологическая характеристика юных спортсменов

Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом

Два основных функциональных эффекта тренировки

Пороговые тренирующие нагрузки

Специфичность тренировочных эффектов

Обратимость тренировочных эффектов

Тренируемость



К ациклическим относятся такие упражнения, на протяжении выполнения которых резко меняется характер двигательной активности. Упражнениями такого типа являются все спортивные игры, спортивные единоборства, метания и. прыжки, гимнастические и акробатические упражнения, упражнения на водных и. горных лыжах, в фигурном катании на коньках. Для ациклических упражнений характерны также резкие изменения мощности по ходу их

Некоторые виды спорта включают разные упражнения - циклические и ациклические. Таковы, например.; многоборья в легкой атлетике, лыжное двоеборье, современное пятиборье. Поэтому понятие "соревновательное спортивное упражнение" и понятия "вид спорта" или "спортивная дисциплина" во многих случаях нетождественны выполнения. Это справедливо не только для соревновательных, но и для тренировочных упражнений (например, повторное пробегание отрезков с различной скоростью).

Важнейшую классификационную характеристику упражнений, кроме технических, составляет их мощность. Учитывая, что она относительно постоянна в циклических упражнениях, их можно классифицировать по средней мощности нагрузки на протяжении любого (достаточно длинного) отрезка времени выполнения упражнения.

На протяжении выполнения ациклических упражнений выделяют периоды наибольшей активности (мощности) - рабочие периоды, чередуемые с промежуточными периодами относительно невысокой активности (мощности), вплоть до полного отдыха (нулевой мощности). При классификации ациклических упражнений остается неясным, оценивать ли мощность основных рабочих периодов ("пиковую" мощность) или "среднюю" мощность за все время упражнения, включая основные рабочие периоды и промежуточные периоды относительного или полного отдыха. Физиологическая характеристика ациклических упражнений при использовании каждого из таких показателей будет различной.

Механическая, или физическая, мощность выполняемого упражнения измеряется физическими величинами - в ваттах, кгм/мин. Она определяет физическую нагрузку. В подавляющем большинстве случаев очень трудно достаточно точно измерить физическую мощность спортивных упражнений. В циклических упражнениях мощность (физическая нагрузка) и скорость перемещения (при неизменной технике выполнения движений) связаны линейной зависимостью: чем больше скорость, тем выше физическая нагрузка.

Совокупность физиологических (и психофизиологических) реакций организма на данную физическую нагрузку позволяет определить физиологическую мощность нагрузки или физиологическую нагрузку на организм работающего человека. "Физиологическая нагрузка" или "физиологическая мощность" - понятия близкие к термину "тяжесть работы". У каждого человека при выполнении упражнения одного и того же характера в одинаковых условиях внешней среды физиологическая мощность нагрузки находится в прямой зависимости от физической нагрузки. Например, чем выше скорость бега, тем больше физиологическая нагрузка.


Однако одинаковая физическая нагрузка вызывает неодинаковые физиологические реакции у людей разного возраста и пола, у людей с неодинаковой степенью функциональной подготовленности (тренированности), а также у одного и того же человека в разных условиях (например, при повышенных или пониженных температуре или давлении воздуха). Кроме того, различные физиологические реакции наблюдаются у одного и того же человека при одинаковой по мощности физической нагрузке, выполняемой разными мышечными группами (руками или ногами) или при разных положениях тела (лежа или стоя). Так, у гребцов на каноэ; пловцов или бегунов, выполняющих одинаковую по физической мощности работу (с одинаковой скоростью потребления О2), физиологические нагрузки (реакции) сильно различаются.

Следовательно, показатели физической мощности упражнения не могут быть использованы в качестве критерия для единой физиологической классификации различных спортивных упражнений, выполняемых людьми разного пола и возраста, с неодинаковыми функциональными возможностями и подготовленностью (тренированностью) или одним и тем же спортсменом в разных условиях. Поэтому в качестве классификационного признака чаще используются показатели физиологической мощности или физиологической нагрузки.

Одним из таких показателей служит предельное время выполнения данного упражнения. Действительно, чем выше физиологическая мощность ("тяжесть работы"), тем короче предельное время выполнения работы. Проанализировав по данным, мировых рекордов зависимость между скоростью преодоления разных дистанции и предельным (рекордным) временем, В.С. Фарфель разделил "кривую рекордов" на четыре зоны относительной мощности: с предельной продолжительностью упражнений до 20 с (зона максимальной мощности), от 20 с до 3-5 мин (зона субмаксимальной мощности), от 3-5 до 30-40 мин (зона большой мощности) и более 40 мин (зона умеренной мощности). Такая классификация спортивных циклических упражнении получила широкое распространение.

Другой подход к характеристике физиологической мощности состоит в определении относительных физиологических сдвигов. Характер и величина, ответных физиологических реакций на одну и ту же физическую нагрузку зависят прежде всего от предельных функциональных возможностей ведущих (для данного упражнения) физиологических систем. При выполнении одинаковой физической нагрузки у людей с более высокими функциональными возможностями ведущих систем величина реакций (физиологические сдвиги) меньше, и следовательно, физиологическая нагрузка на ведущие (и другие) системы и соответственно на организм в целом относительно меньше, чем у людей с более низкими функциональными возможностями. Одинаковая физическая нагрузка будет относительно труднее ("тяжелее") для вторых, и, следовательно, предельное

время ее выполнения у них будет короче, чем у первых. Соответственно первые способны выполнять такие большие физические нагрузки, которые недоступны вторым.

Например, два спортсмена выполняют одну и ту же абсолютную физическую Нагрузку с одинаковым рабочим потреблением О2 - 3 л/мин. Однако у одного из спортсменов МПК равно 6 л/мин, а у другого - 4,5 л/мин. Соответственно относительная физиологическая нагрузка на. кислородтранспортную систему у этих спортсменов далеко не одинакова, так как у первого выполняемая физическая работа "нагружает" эту систему лишь на 50% от ее предельных возможностей, а у второго - на 75%. Следовательно, относительная физиологическая нагрузка у первого спортсмена меньше, чем у второго.

Таким образом, для физиологической классификации спортивных упражнений, используются показатели относительной физиологической "мощности: физиологической н а-грузки, физиологической напряженности, тяжести работы. Такими показателями служат относительные физиологические сдвиги, которые возникают в ведущих функциональных системах в ответ на данную физическую нагрузку, выполняемую в определенных условиях внешней среды. Эти сдвиги выявляются путем сравнения текущих рабочих показателей деятельности ведущих физиологических, систем с предельными (максимальными) показателями.

Классификация циклических упражнений


Энергетические запросы организма (работающих мышц) удовлетворяются, как известно, двумя основными путями: анаэробным и аэробным. Соотношение этих двух путей энергопродукции неодинаково в разных циклических упражнениях. При выполнении любого упражнения практически действуют все три энергетические системы: анаэробные фосфагенная (алактатная) и лактацидная (гликолитическая) и аэробная (кислородная, окислительная). "Зоны" их действия частично перекрываются. Поэтому трудно выделить "чистый" вклад каждой из энергетических систем, особенно при работе относительно небольшой предельной продолжительности. В этой связи часто объединяют в пары "соседние" по энергетической мощности (зоне действия) системы: фосфагенную с лактацидной, лактацидную с кислородной. Первой при этом указывается система, энергетический вклад которой больше.

В соответствии с относительной нагрузкой на анаэробные и аэробные энергетические системы все циклические упражнения можно разделить на анаэробные и аэробные. Первые - с преобладанием анаэробного, вторые - аэробного компонента энергопродукции. Ведущим качеством при выполнении анаэробных упражнений служит мощность (скоростно-силовые возможности), при выполнении аэробных упражнений выносливость.


Соотношение разных путей (систем) знергопродукции в значительной мере определяет, характер и степень изменений в деятельности различных физиологических систем, обеспечивающих выполнение разных упражнений.

Анаэробные упражнения. Выделяются три группы анаэробных упражнений:

  1. максимальной анаэробной мощности (анаэробной мощности) ;

  2. околомаксимальной анаэробной мощности (смешанной анаэробной мощности);

  3. субмаксимальной анаэробной мощности (анаэробно-аэробной мощности).

Энергетические и эргомет-рические характеристики анаэробных упражнений приведены в табл. 5.
Таблица 5.

Энергетическая и эргометрическая характеристика анаэробных циклических упражнений

Группа

Анаэробный компонент энергопродукции, % от обшей энергопродукции

Соотношение трех энергетических систем, %

Рекордная мощность, ккал/мин

Предельная рекордная продолжительность при беге, с

фосфагенная + лактацидная

лактацидная + кислородная

кислородная

Максимальной анаэробной мощности

90-100

95

5




120

До 10

Околомаксимальной анаэробной мощности

75- 85

70

20

10

100

20-50

Субмаксимальной анаэробной мощности

60- 70

25

60

15

40

60-120

Упражнения максимальной анаэробной мощности (анаэробной мощности) - это упражнения с почти исключительно анаэробным способом энергообеспечения работающих мышц: анаэробный компонент в общей энергопродукции составляет от 9ч0 до 100%. Он обеспечивается главным образом за счет фосфагенной энергетической системы (АТФ + КФ) при некотором участии лактацидной (гликолитической) системы. Рекордная максимальная анаэробная мощность, развиваемая выдающимися спортсменами во время спринтерского бега, достигает 120 ккал/мин. Возможная предельная продолжительность таких упражнений - несколько секунд. Таковы, например, соревновательный бег на дистанциях до 100 м, спринтерская велогонка на треке, плавание и ныряние на дистанцию до 50 м.


Усиление деятельности вегетативных систем происходит в процессе работы постепенно. Из-за кратковременности анаэробных упражнений во время их выполнения функции кровообращения и дыхания, не успевают достигнуть возможного максимума. На протяжении максимального анаэробного упражнения спортсмен либо вообще не дышит, либо успевает выполнить лишь несколько дыхательных циклов. Соответственно "средняя" легочная вентиляция не превышает 20-30% от. максимальной ЧСС повышается еще до старта (до 140-150 уд/мин) и во время упражнения продолжает расти, достигая наибольшего значения сразу после финиша - 80-90% от ''максимальной (160-180 уд/мин). Поскольку энергетическую основу этих упражнений составляют анаэробные процессы, усиление деятельности кардиореспираторной (кислородтранспортной) системы практически не имеет значения для энергетического обеспечения самого упражнения. Концентрация лактата в крови за время работы изменяется крайне незначительно, хотя в рабочих мышцах она может достигать в конце работы 10 ммоль/кг и даже больше. Концентрация лактата в крови продолжает нарастать на протяжении нескольких минут после прекращения работы и составляет максимально 5-8 ммоль/л.

Перед выполнением анаэробных упражнений несколько повышается концентрация глюкозы в крови. До начала и в результате - их выполнения в крови очень существенно повышается концентрация катехоламинов (адреналина и норадреналина) и гормона роста, но несколько снижается концентрация инсулина; концентрации глюкагона и кортизола заметно не меняются .

Ведущие физиологические системы и механизмы, определяющие спортивный результат в этих упражнениях,- центрально-нервная регуляция мышечной деятельности (координация движений с проявлением большой мышечной мощности), функциональные свойства нервно-мышечного аппарата (скоростно-силовые), емкость и мощность фосфагенной энергетической системы рабочих мышц.

Упражнения околомаксимальной анаэробной мощности (смешанной анаэробной мощности) - это упражнения с преимущественно анаэробным энергообеспечением работающих мышц. Анаэробный компонент в общей энергопродукции составляет 75- 85% - отчасти за счет фосфагенной и в наибольшей мере за счет лактацидной (гликолитической) энергетических систем. Рекордная околомаксимальная анаэробная мощность в беге - в пределах 50-100 ккал/мин. Возможная предельная продолжительность таких упражнений у выдающихся спортсменов