ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.01.2024
Просмотров: 75
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
22
1) Построение логарифмических характеристик последовательно соединенных типовых динамических звеньев
Пусть передаточная функция части системы
Подставив вместо S jω найдем модуль, затем логарифмируя, найдем выражение
Эти формулы показывают, что результирующие характеристики определяются суммой логарифмических и фазовых характеристик типовых звеньев.
2)ЛЕКЦИИ
23
1) Основные показатели качества системы
Правильно спроектированная САР должна отвечать указанной точности и плавности протекания процесса, под влиянием управляющего или возмущающего воздействия.
Пусть эта система находится в состоянии переходного процесса. На вход подаем единичное возмущение (g(t) = 1(t)); управляющий сигнал на выходе , где xсв(t) – свободная составляющая переходного процесса, которая обуславливается свойствами системы и соответствующему общему решению другой системы. Хвын(t) – вынужденная составляющая переходного процесса, обусловленная законом изменения входного воздействия g(t).
Известно, что Хвын(t) определяет точность САР, а xсв(t) влияет на показатели переходного процесса
Показатели качества процесса регулирования:
1) Перерегулирование – это отношение разности σ = (Xmax – Xуст)/ Xусn*100% перерегулирование характеризует колебания системы. Допустимый предел (25…30)%
2) Время регулирования характеризует быстроту уравновешивания системы. tрег принимаем за момент окончания переходного процесса.(допускается отклонение ±5%)
3) Число колебаний регулируемой величины в течении времени переходного процесса. tрегулир характеризует колебания системы. (допускается не более 3-х полных колебаний).
24
1)Характеристики динамических звеньев Частотные характеристики
Рассмотрим передаточную функцию, состоящую из n-го количества элементов.
Последовательность выражений позволяет найти амплитуду и фазу колебаний на выходе системы при гармоническом воздействии на ее входе.
Модуль этого выражения показывает, во сколько раз увеличивается или уменьшается амплитуда колебаний на выходе системы по сравнению с амплитудой колебаний на входе.
Аргумент вектора F(jω) описывает фазовый угол колебаний по отношению колебаниям на входе => (*) определяет частотную характеристику, называемую амплитудно-фазовой частотной характеристикой (АФЧХ).
АФЧХ строится на комплексной плоскости j – мнимая единица.
- коэффициент, характеризующий изменение амплитуды при изменении частоты, при изменяющейся частоте, называется амплитудно-частотной характеристикой (АЧХ).
дает представление о фазовом сдвиге выходных колебаний и он называется фазово-частотной характеристикой (ФЧХ)
АФЧХ:
Вещественные или мнимые частотные характеристики связаны с АЧХ и ФЧХ следующим образом:
При анализе САР на устойчивость и качества процесса регулирования, а также при решении других задач, часто обращаются к ЛЧХ
Усиление L(ω) = 20lg|Ф(jω)| = 20lgA(ω) [дБ] – является единицей логарифмической относительно величины. Изменения относительно двух величин в 10 раз соответствует изменению усиления на 20 дБ.
Известно, что АЧХ представляет собой отношение 2-х амплитуд: входного и выходного сигналов.
25
2) Статическое и астатическое САР.
Системы стабилизации, программного управления и следящие системы можно разделить на 2 группы:
1 – статические;
2 - астатические;
1) 2)
САР будет статической по отношению к возмущающему или управляющему воздействиям, постоянной величине, отклонению регулируемой величины.
САР явл-ся астатической по возмущению и управляющему воздействию, если при стремлении возмущающего управ. воздействия постоянной величины отклонения регулируемая величина стремится к нулю и не зависит от величины приложенного воздействия. Одна и та же САР может быть астатической по управлению и статической по возмущению, либо наоборот.
26
1. Нелинейной системой автоматического управления наз-ся такая система которая содержит хотябы одно звено описываемое нелинейным уравнением.
В применении к нелинейности состоит
Пусть передаточная функция замкнутой системы будет представлена W(S)=K(S)/D(S) в этом случае диф уравнение замкнутой нелинейной САР можно представить D(S)X(S)+K(S)D(X)=0
Пусть функция f(x) однозначная функция, заменяем ее суммой линейной функции не линейных слагаемых: f(x)=c(x)+µφ(x) выбираем с таким чтобы уравнение при µ=0 имело следующий вид [D(S)+CK(S)]X=0
Решение этого уравнения имело бы чисто мнимые корни, вот такая линеаризация называется эквивалентной.
2. Построение желаемой ЛАХ. Ж. ЛАХ опред. показ. кач. и точн. проц. регулир. Низночастот. ее часть обусл. точн. воспро. медл. измен. возд. По ней можно опред. добротность по скорости и добротность по ускорению, а также статич. ошибку. Частота среза системы опред. с помощью номограмм Солодникова. По перерегулированию опред. вещ. чать САР, а по вещ. части наход. время регулир.: tрег.=kπ/ωсреза, k-коэф. Найдя tрег. можно опред. частоту среза ωсреза. Для наиб. простой реализ. послед. корректир. устройства изломн. накл. жел. ЛАХ (низкочатс.) и ЛАХ желаем. части совпад.
ε(t)=ω3/Dω+ ε3/Dε, ωk=Dω, ωl=Dε^0.5, ω=1/T, tрег.=4,2π/ωсреза, Wустр.=Wжел.-Wнеизм.
27
1) Синтез САР
Сущность задачи синтеза законов состоит в следующем:
Такой выбор структурной схемы САР, а также ее параметров, ее конструктивное решение, при которой обеспечивается требуемые показатели качества и точности процесса регулирования, а сама САР состоит из наиболее простых устройств управления.
Вс. САР можно разделить на:
- объект регулирования (исполнительное устройство, усилитель мощности и измерительные устройства) Все это неизменная часть САР
- корректирующие устройства и усилители – это изменяемая часть
В значительной степени определяющей при выборе устройств неизменяемой части является стоимость, надежность, масса и габаритные размеры.
Порядок синтеза:
-
составляется упрощенная структурная схема , выбирается место и схема, включающая корректор и усилители устройств -
по критерию качества или требованию показателей качества и точности регулирования подбирают желаемую логарифмическую частотную характеристику разомкнутой САР -
Определяют тип и параметры корректирующих устройств САР и составляют окончательную схему САР -
Определяют динамические характеристики системы и сравнивают их с соответствующими данными технических условий -
Приведенный порядок синтеза может привести к неоднозначности решения задачи.
2) Устойчивость импульсных систем
Необходимо и длстаточно что бы полюсы ее передаточной функции распологались в левой полуплоскости комплексной переменной S. Таким образом импульсная система устойчива если, все корни ее характерестического уравнения лежат внутри круга единичного радиуса.
КРИТЕРИЙ УСТОЙЧИВОСТИ РАУСА-ГУРВЕЦА
Необходимым и достаточным условием устойчивости системы любого порядка без решения характеристического уравнения, по рассмотрению его коэффициентов, были сформулированы учеными Раусом и Гурвицом.
Руас сказал, что для выполнения условия устойчивости, а следовательно для расположения всех корней характеристического уравнения в левой полуплоскости , необходимо и достаточно, чтобы все коэффициенты характеристического уравнения были больше нуля.
Гурвец дополнил, что для выполнения условия устойчивости, а следовательно, для расположения вех корней характеристического уравнения в левой полуплоскости, необходимо и достаточно, чтобы все n диагональных миноров матрицы были положительны.
Критерий устойчивости Рауса и Гурвеца является алгебраическим, т.к. при их использовании задача определения знаков вещественных частей хар. уравнения сводится к выполнению общих алгебраических операций.
Принадлежность корней к кругу еденичного радиуса может быть установлена при помощи критерия Шур- Кона. До некоторой степени он анологичен критерию Гурвица, однако при его использование необходимо состовлять и анализировать определитель вплоть до до определителя порядка 2п*2п, где п порядок характеристического уравнения.
28
1) Критерий устойчивости найквеста
Этот критерий является графическим критерием. Правила, с помощью которых можно установить по АФЧХ разомкнутой системы необходимое и достаточное условие замкнутой системы. Если разомкнутая система устойчива, то для устойчивости системы в замкнутом состоянии необходимо и достаточно, чтобы АФЧХ разомкнутой системы не охватывала на действительной оси координат от -1, j0. Второй случай соответствует неустойчивой САР. Эта точка называется критической. Если же АФЧХ проходит через точку (-1; j0), то САР будет находиться на границе устойчивости.
Если неустойчивая система имеет в правой полуплоскости петлю, то эта система будет устойчива в замкнутом состоянии и если АФЧХ разомкнутой системы описываемая концом вектора 1+W, при возрастании частоты от нуля до ∞ стрелка вектора обойдет критическую точку против часовой стрелки k раз. Это является необходимым и достаточным условием.
29
1)Изменение неизменной величины во времени определяет переходный процесс и представляет собой динамическую характеристику по которой можно судить о качестве работы системы. Чтобы качественно выполнять задачу регулирования в различных условиях система должна обладать определенным запасом устойчивостим
2)
Устойчивость линейных систем
В процессе работы на систему действуют различные возмущающие силы, вызывающие ее отклонение от заданного закона движения. Если под влиянием возмущения система отклонилась от состояния равновесия и после прекращения действия внешнего возмущения снова вернулась в исходное состояние, то такая система устойчива.
Если под влиянием внешнего возмущения система будет отклоняться от состояния равновесия, а после прекращения действия возмущения система не возвращается в исходное состояние, а удаление системы с течением времени возрастает, то такая система называется неустойчивой.
В линейных системах отклонение при неустойчивом движении будет неограниченно возрастать.
Необходимое и достаточное условие устойчивости является выполнение требования, в соответствии с которым характеристическое уравнение системы должно иметь отрицательную вещественную часть. Наличие среди корней характеристического уравнения хотя бы одного корня с положительной вещественной частью свидетельствует о невыполнении этого условия, т.е. приводит к неустойчивости системы.
Устойчивость в линейной системе характеризуется затуханием переходного процесса. Т.к. затухание переходного процесса в свою очередь определяется только корнем характеристического уравнения
и не зависит от воздействия, то устойчивость является внутренним свойством линейной системы.
Для определения устойчивости системы необходимому и достаточному условию нужно уметь находить корни характеристического уравнения. Это можно сделать просто для уравнения 1-го и 2-го порядков. Реальные системы десятых, сотых порядков. Поэтому для анализа устойчивости без нахождения корней характеристического уравнения, используют критерии устойчивости.