ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.01.2024
Просмотров: 74
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
КРИТЕРИЙ УСТОЙЧИВОСТИ РАУСА-ГУРВЕЦА
Необходимым и достаточным условием устойчивости системы любого порядка без решения характеристического уравнения, по рассмотрению его коэффициентов, были сформулированы учеными Раусом и Гурвицом.
Руас сказал, что для выполнения условия устойчивости, а следовательно для расположения всех корней характеристического уравнения в левой полуплоскости , необходимо и достаточно, чтобы все коэффициенты характеристического уравнения были больше нуля.
Гурвец дополнил, что для выполнения условия устойчивости, а следовательно, для расположения вех корней характеристического уравнения в левой полуплоскости, необходимо и достаточно, чтобы все n диагональных миноров матрицы были положительны.
Критерий устойчивости Рауса и Гурвеца является алгебраическим, т.к. при их использовании задача определения знаков вещественных частей хар. уравнения сводится к выполнению общих алгебраических операций.
30
1) Статическое и астатическое регулирование.
Системы стабилизации, программного управления и следящие системы можно разделить на 2 группы:
1 – статические;
2 - астатические;
1) 2)
САР будет статической по отношению к возмущающему или управляющему воздействиям, постоянной величине, отклонению регулируемой величины.
САР явл-ся астатической по возмущению и управляющему воздействию, если при стремлении возмущающего управ. воздействия постоянной величины отклонения регулируемая величина стремится к нулю и не зависит от величины приложенного воздействия. Одна и та же САР может быть астатической по управлению и статической по возмущению, либо наоборот
2) Показатели качества процесса регулирования:
1) Перерегулирование – это отношение разности σ = (Xmax – Xуст)/ Xусn*100% перерегулирование характеризует колебания системы. Допустимый предел (25…30)%
2) Время регулирования характеризует быстроту уравновешивания системы. tрег принимаем за момент окончания переходного процесса.(допускается отклонение ±5%)
3) Число колебаний регулируемой величины в течении времени переходного процесса. tрегулир характеризует колебания системы. (допускается не более 3-х полных колебаний)
1) Собственная частота колебаний системы , где Тк – период собственных колебаний системы.
2) Логарифмический декремент затухания Характеризует быстродействие системы, т.е., быстроту затухания колебательного процесса.
3) Максимальная скорость сигнала на входе . Данный показатель характеризует быстродействие системы.
Для замкнутой САР, имеющий колебательный переходный процесс, на основе указанных показателей качества можно установить область допустимых отклонений регулируемой величины.
31
2) Устойчивость импульсных систем
Необходимо и длстаточно что бы полюсы ее передаточной функции распологались в левой полуплоскости комплексной переменной S. Таким образом импульсная система устойчива если, все корни ее характерестического уравнения лежат внутри круга единичного радиуса.
КРИТЕРИЙ УСТОЙЧИВОСТИ РАУСА-ГУРВЕЦА
W*(s)=H*(s)/G*(s).
Для уст. замкн. имп. системы необх., чтобы z=e^q=(η+1)/(η-1). Полином G*(s)=a0+(a1)e^q+…+(an)e^(nq) в этом случ. можно преобраз. так, чтобы он отображ. внутри единич. круга в пл. z на лев. полупл. η. Поэтому усл. |z|<1 будет соотв. усл., что действ. Re(η)<0.
32
1) Классификация САУ. Следящие системы
САУ в зависимости от характера управляющего воздействия делится на 3 класса:
-
система стабилизации; -
система программного регулирования; -
следящая система;
. Следящая система
Управляющее воздействие явл-ся величиной переменной, матем. Описание его во времени не может быть установлено, т.е. неизвестен источник сигнала. Т.к. следящая система предназначена для воспроизведения на выходе управляющего воздействия с возможно большей точностью, то ошибка явл-ся характерной, по которой можно судить о динамических св-вах следящих систем.
Ошибка в следящей системе – это сигнал, в зависимости от величины которого осуществляется управление исполнительного устройства объекта.
2)Типовые нелинейные звенья
1.звено релейного типа
2. звено с кусочно-лминейной характеристикой
3. звено с криволинейной характеристикой
4. звено уравнение которого содержит произведение переменных или их производных и другие их комбинации
5. неленейный импульсный элемент
6. логическое звено
7. звенья описываемые кусочно-линейными диф-ми уравнениями, в том числе переменной структуры.1>