Файл: Основы сетей передачи данных Лекция #1 Эволюция вычислительных сетей. Часть 1.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 534
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
потоков общего агрегированного потока, который можно передавать по одному физическому каналу связи.
Операции мультиплексирования/демультиплексирования имеют такое же важное значение в любой сети, как и операции коммутации, потому что без них пришлось бы все коммутаторы связывать большим количеством параллельных каналов, что свело бы на нет все преимущества неполносвязной сети.
На рис. 5.4 показан фрагмент сети, состоящий из трех коммутаторов. Коммутатор 1 имеет пять сетевых интерфейсов. Рассмотрим, что происходит на интерфейсе 1. Сюда поступают данные с трех интерфейсов — int 3, int.4 и int.5. Все их надо передать в общий физический канал, то есть выполнить операцию мультиплексирования. Мультиплексирование представляет собой способ обеспечения доступности имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети.
Рис. 5.4. Операции мультиплексирования и демультиплексирования потоков при коммутации.
Существует множество способов мультиплексирования потоков в одном физическом канале, и важнейшим из них является разделение времени. При этом способе каждый поток время от времени (с фиксированным или случайным периодом) получает в свое распоряжение физический канал и передает по нему данные. Очень распространено также частотное разделение канала, когда каждый поток передает данные в выделенном ему частотном диапазоне.
Технология мультиплексирования должна позволять получателю такого суммарного потока выполнять обратную операцию — разделение (демультиплексирование) данных на составляющие потоки. На интерфейсе int.3 коммутатор выполняет демультиплексирование потока на три составляющих подпотока. Один из них он передает на интерфейс int. 1, другой на int.2, а третий на int.5. А вот на интерфейсе int.2 нет необходимости выполнять мультиплексирование или демультиплексирование — этот интерфейс выделен одному потоку в монопольное пользование. В общем случае на каждом интерфейсе могут одновременно выполняться обе задачи — мультиплексирование и демультиплексирование.
Частный случай коммутатора (рис. 5.5а), у которого все входящие информационные потоки коммутируются на один выходной интерфейс, где мультиплексируются в один агрегированный поток и направляются в один физический канал, называется мультиплексором (multiplexer
, mux). Коммутатор (рис.5.5б), который имеет один входной интерфейс и несколько выходных, называется демультиплексором.
Рис. 5.5. Мультиплексор (а) и демультиплексор (б).
Еще один параметр, характеризующий использование разделяемых каналов связи — количество узлов, подключенных к такому каналу. В приведенных выше примерах к каналу связи подключались только два взаимодействующих узла, точнее — два интерфейса. В телекоммуникационных сетях используется и другой вид подключения, когда к одному каналу подключается несколько интерфейсов. Такое множественное подключение интерфейсов порождает уже рассматривавшуюся выше топологию "общая шина", иногда называемую также шлейфовым подключением. Во всех этих случаях возникает проблема согласованного использования канала несколькими интерфейсами. Ниже на рисунках показаны различные варианты разделения каналов связи между интерфейсами.
Рис. 5.6. Два однонаправленных физических канала.
В случае на рис.5.6 коммутаторы К1 и К2 связаны двумя однонаправленными физическими каналами, то есть такими каналами, по которым информация может передаваться только в одном направлении. В этом случае передающий интерфейс является активным, и физическая среда передачи находится целиком и полностью под его управлением. Пассивный интерфейс только принимает данные. Проблемы разделения канала между интерфейсами здесь нет. Заметим, однако, что задача мультиплексирования потоков данных в канале при этом сохраняется. На практике два однонаправленных канала, реализующие в целом дуплексную связь между двумя устройствами, обычно считаются одним дуплексным каналом, а два интерфейса одного устройства рассматриваются как передающая и принимающая части одного и того же интерфейса.
Рис. 5.7. Один полудуплексный канал.
На рисунке 5.7 коммутаторы К1 и К2 связаны каналом, который может передавать данные в обе стороны, но только попеременно. При этом возникает необходимость в механизме согласования доступа интерфейсов К1 и К2 к такому каналу. Обобщением этого варианта является случай, показанный на
рис. 5.8, когда к каналу связи подключается несколько (больше двух) интерфейсов, образуя общую шину.
Рис. 5.8. Схема "общая шина"
Совместно используемый несколькими интерфейсами физический канал называют разделяемым1) (shared). Часто используется также термин "разделяемая среда" (shared media) передачи данных. Разделяемые каналы связи используются не только для связей типа коммутатор-коммутатор, но и для связей компьютер-коммутатор и компьютер-компьютер.
Существуют различные способы организации совместного доступа к разделяемым линиям связи. В одних случаях используют централизованный подход, когда доступом управляет специальное устройство — арбитр, в других — децентрализованный. Внутри компьютера проблемы разделения линий связи между различными модулями также существуют — примером может служить доступ к системной шине, которым управляет либо процессор, либо специальный арбитр шины. В сетях организация совместного доступа к линиям связи имеет свою специфику из-за существенно большего времени распространения сигналов по линиям связи. Из-за этого процедуры согласования доступа к линии связи могут занимать слишком много времени и приводить к значительному снижению производительности сети.
Несмотря на все эти сложности, в локальных сетях разделяемые среды используются очень часто. Этот подход, в частности, реализован в широко распространенных классических технологиях Ethernet, Token Ring, FDDI. В глобальных сетях разделяемые между интерфейсами среды практически не используются. Это объясняется тем, что большие временные задержки при распространении сигналов вдоль протяженных каналов связи приводят к слишком длительным переговорным процедурам доступа к разделяемой среде, сокращая до неприемлемого уровня долю полезного использования канала связи на передачу данных абонентов.
Однако в последние годы наметилась тенденция отказа от разделяемых сред передачи данных и в локальных сетях. Это связано с тем, что за достигаемое таким образом снижение стоимости сети приходится расплачиваться производительностью. Сеть с разделяемой средой при большом количестве узлов всегда будет работать медленнее, чем аналогичная сеть с индивидуальными линиями связи, так как пропускная способность индивидуальной линии связи достается одному компьютеру, а при совместном использовании — делится на все компьютеры сети. Часто с такой потерей производительности приходится мириться ради увеличения экономической эффективности сети. Не только в классических, но и в
совсем новых технологиях, разработанных для локальных сетей, сохраняется режим разделяемых линий связи. Например, разработчики технологии Gigabit Ethernet, принятой в 1998 году в качестве нового стандарта, включили режим разделения передающей среды в свои спецификации наряду с режимом работы по индивидуальным линиям связи.
Лекция #6: Коммутация каналов и коммутация пакетов. Часть 1
Рассматриваются и сравниваются основные подходы к решению задачи коммутации: коммутация пакетов, каналов и сообщений.
Операции мультиплексирования/демультиплексирования имеют такое же важное значение в любой сети, как и операции коммутации, потому что без них пришлось бы все коммутаторы связывать большим количеством параллельных каналов, что свело бы на нет все преимущества неполносвязной сети.
На рис. 5.4 показан фрагмент сети, состоящий из трех коммутаторов. Коммутатор 1 имеет пять сетевых интерфейсов. Рассмотрим, что происходит на интерфейсе 1. Сюда поступают данные с трех интерфейсов — int 3, int.4 и int.5. Все их надо передать в общий физический канал, то есть выполнить операцию мультиплексирования. Мультиплексирование представляет собой способ обеспечения доступности имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети.
Рис. 5.4. Операции мультиплексирования и демультиплексирования потоков при коммутации.
Существует множество способов мультиплексирования потоков в одном физическом канале, и важнейшим из них является разделение времени. При этом способе каждый поток время от времени (с фиксированным или случайным периодом) получает в свое распоряжение физический канал и передает по нему данные. Очень распространено также частотное разделение канала, когда каждый поток передает данные в выделенном ему частотном диапазоне.
Технология мультиплексирования должна позволять получателю такого суммарного потока выполнять обратную операцию — разделение (демультиплексирование) данных на составляющие потоки. На интерфейсе int.3 коммутатор выполняет демультиплексирование потока на три составляющих подпотока. Один из них он передает на интерфейс int. 1, другой на int.2, а третий на int.5. А вот на интерфейсе int.2 нет необходимости выполнять мультиплексирование или демультиплексирование — этот интерфейс выделен одному потоку в монопольное пользование. В общем случае на каждом интерфейсе могут одновременно выполняться обе задачи — мультиплексирование и демультиплексирование.
Частный случай коммутатора (рис. 5.5а), у которого все входящие информационные потоки коммутируются на один выходной интерфейс, где мультиплексируются в один агрегированный поток и направляются в один физический канал, называется мультиплексором (multiplexer
, mux). Коммутатор (рис.5.5б), который имеет один входной интерфейс и несколько выходных, называется демультиплексором.
Рис. 5.5. Мультиплексор (а) и демультиплексор (б).
Разделяемая среда передачи данных
Еще один параметр, характеризующий использование разделяемых каналов связи — количество узлов, подключенных к такому каналу. В приведенных выше примерах к каналу связи подключались только два взаимодействующих узла, точнее — два интерфейса. В телекоммуникационных сетях используется и другой вид подключения, когда к одному каналу подключается несколько интерфейсов. Такое множественное подключение интерфейсов порождает уже рассматривавшуюся выше топологию "общая шина", иногда называемую также шлейфовым подключением. Во всех этих случаях возникает проблема согласованного использования канала несколькими интерфейсами. Ниже на рисунках показаны различные варианты разделения каналов связи между интерфейсами.
Рис. 5.6. Два однонаправленных физических канала.
В случае на рис.5.6 коммутаторы К1 и К2 связаны двумя однонаправленными физическими каналами, то есть такими каналами, по которым информация может передаваться только в одном направлении. В этом случае передающий интерфейс является активным, и физическая среда передачи находится целиком и полностью под его управлением. Пассивный интерфейс только принимает данные. Проблемы разделения канала между интерфейсами здесь нет. Заметим, однако, что задача мультиплексирования потоков данных в канале при этом сохраняется. На практике два однонаправленных канала, реализующие в целом дуплексную связь между двумя устройствами, обычно считаются одним дуплексным каналом, а два интерфейса одного устройства рассматриваются как передающая и принимающая части одного и того же интерфейса.
Рис. 5.7. Один полудуплексный канал.
На рисунке 5.7 коммутаторы К1 и К2 связаны каналом, который может передавать данные в обе стороны, но только попеременно. При этом возникает необходимость в механизме согласования доступа интерфейсов К1 и К2 к такому каналу. Обобщением этого варианта является случай, показанный на
рис. 5.8, когда к каналу связи подключается несколько (больше двух) интерфейсов, образуя общую шину.
Рис. 5.8. Схема "общая шина"
Совместно используемый несколькими интерфейсами физический канал называют разделяемым1) (shared). Часто используется также термин "разделяемая среда" (shared media) передачи данных. Разделяемые каналы связи используются не только для связей типа коммутатор-коммутатор, но и для связей компьютер-коммутатор и компьютер-компьютер.
Существуют различные способы организации совместного доступа к разделяемым линиям связи. В одних случаях используют централизованный подход, когда доступом управляет специальное устройство — арбитр, в других — децентрализованный. Внутри компьютера проблемы разделения линий связи между различными модулями также существуют — примером может служить доступ к системной шине, которым управляет либо процессор, либо специальный арбитр шины. В сетях организация совместного доступа к линиям связи имеет свою специфику из-за существенно большего времени распространения сигналов по линиям связи. Из-за этого процедуры согласования доступа к линии связи могут занимать слишком много времени и приводить к значительному снижению производительности сети.
Несмотря на все эти сложности, в локальных сетях разделяемые среды используются очень часто. Этот подход, в частности, реализован в широко распространенных классических технологиях Ethernet, Token Ring, FDDI. В глобальных сетях разделяемые между интерфейсами среды практически не используются. Это объясняется тем, что большие временные задержки при распространении сигналов вдоль протяженных каналов связи приводят к слишком длительным переговорным процедурам доступа к разделяемой среде, сокращая до неприемлемого уровня долю полезного использования канала связи на передачу данных абонентов.
Однако в последние годы наметилась тенденция отказа от разделяемых сред передачи данных и в локальных сетях. Это связано с тем, что за достигаемое таким образом снижение стоимости сети приходится расплачиваться производительностью. Сеть с разделяемой средой при большом количестве узлов всегда будет работать медленнее, чем аналогичная сеть с индивидуальными линиями связи, так как пропускная способность индивидуальной линии связи достается одному компьютеру, а при совместном использовании — делится на все компьютеры сети. Часто с такой потерей производительности приходится мириться ради увеличения экономической эффективности сети. Не только в классических, но и в
совсем новых технологиях, разработанных для локальных сетей, сохраняется режим разделяемых линий связи. Например, разработчики технологии Gigabit Ethernet, принятой в 1998 году в качестве нового стандарта, включили режим разделения передающей среды в свои спецификации наряду с режимом работы по индивидуальным линиям связи.
Лекция #6: Коммутация каналов и коммутация пакетов. Часть 1
Рассматриваются и сравниваются основные подходы к решению задачи коммутации: коммутация пакетов, каналов и сообщений.