Файл: 1. Особенности развития учащихся среднего школьного возраста (1015 лет).docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 89

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


3x2 — 2px — p + 6 = 0:

а) имеет два различных корня;

б) имеет один корень;

в) не имеет корней?

В § 2 «Рациональные неравенства» заданием с параметром является задание № 50: Найдите такое целое зачение параметра p, при котором множество решений неравенства x(x + 2)(p — x) ≥ 0 содержит:

а) два целых числа; в) три целых числа;

б) четыре целых числа; г) пять целых чисел.

В § 2 «системы рациональных неравенств» задачами с параметрами являются задачи № 85 — 87.

86. Укажите все значения параметра p, при которых решением системы неравенств является промежуток: а) (5; +∞); б) [3; +∞).

Последний раз задания с параметрами встречаются в главе «Системы уравнений» (№ 117 — 119).

118. При каком значении параметра p система уравнений

имеет одно решение?[15][16][17]

В данном комплекте учебников и задачников достаточно хорошо и полно подобраны задачи с параметрами в каждом классе основной школы. В учебнике 7 класса большое внимание уделяется пропепедевтике уравнений с параметрами. В учебнике для 8 класса при прохождении темы квадратные уравнения» дается достаточно ясное определение параметра и уравнения с параметром.

1   2   3

3. Подбор задач с параметрами по уравнениям и неравенствам для классов с углубленным изучением математики в учебнике А.Г. Мордковича «Алгебра 8»

Шестая глава данного учебника «Алгебраические уравнения» посвящена решению различных видов уравнений. Последним параграфом в этой главе является § 41 «Задачи с параметрами», в коором подходят к понятию параметра, решя вначале два примера, аналогично тому, как вводится понятие параметра в учебнике для 8 класса на стр. 28.

Пример 1. Решить уравнение x2 — (2p + 1)x + (p2 +p — 2) = 0.

Решение.

В данном квадратном уравнении в роли коэффициентов выступают не конкретные числа, а буквенные выражения. Такие уравнения называют уравнениями с буквенными коэффициентами или уравнениями с параметрами.

Найдем дискриминант:

D = (2p + 1)2 — 4(p2 + p — 2) = (4p2 + 4p + 1) — (4p2 + 4p — 8) = 9

Далее

Ответ: p + 2; p — 1.

В учебнике для углубленного изучения после этого решения помещено следующее замечание.

Данное уравнение можно решить устно, если заметить, что p2 + p — 2 = (p + 2)(p — 1). Переписав уравнение в виде x2 — (2p + 1)x + (p + 2)(p — 1) = 0, легко сообразить (с помощью теоремы Виета), что его корнями служат числа p + 2 и p — 1.

Пример 2. Решить уравнение px2 + (1 — p)x — 1 = 0.

Решение.

Это также уравнение с параметром p, но в отличие от предыдущего примера, его нельзя сразу решать по формуле корней квадратного уравнения. Дело в том, что про заданное уравнение мы пока не можем сказать, является ли оно квадратным.

Если p = 0, то получим линейное уравнение x-1=0, откуда получаем x = 1.

Если p ≠ 0, тогда можно применить формулы корней квадратного уравнения: D = (1 — p)2 — 4p(-1) = 1 — 2p + p2 +4p = (p + 1)2 .

Ответ: если p = 0, то x = 1; если p ≠ 0, то x1 = 1, x2 = -1/p.

В учебнике после этого решения помещено замечание, объясняющее замену выражения выражением p + 1, вместо использования знака модуля |p + 1|. Вторым замечанием к решению этого примера является следующее. Квадратное уравнение px2 + (1 — p)x — 1 = 0 можно было решить, не применяя формулу корней. Достаточно заметить, что значение x1 = 1 удовлетворяет уравнению (при x = 1 получаем p + (1 — p) — 1 = 0 — верное равенство), и воспользоваться теоремой Виета, откуда сразу находится второй корень x2 = -1/p.



Как видно, в учебнике для углубленного изучения математики делается больше ссылок на использование теоремы Виета. Кроме того, в нем переходят к более употребительной для обозначения параметров букве а, в то время как в учебнике для общеобразовательных классов используют букву p.

Затем в рассматриваемом учебнике дается более точное определение понятие параметра, чем в учебнике для общеобразовательных классов, а именно: если дано уравнение f(x,a) = 0, которое надо решить относительно переменной x и в котором буквой обозначено произвольное действительное число, то говорят, что задано уравнение с параметром. Основная трудность, связанная с решением таких уравнений, состоит в следующем. При одних значениях параметра уравнение не имеет корней, при других — имеет; при одних значениях параметра корни находятся по одним формулам, при иных — по другим. Например, при решении примера 2 при p = 0 уравнение решалось как линейное (по одной формуле), а при p ≠ 0 — как квадратное (по другой формуле).

Далее демонстрируется решение линейного уравнения с подобными рассуждениями.

Пример 3. Решить уравнение с параметром а: 2a(a — 2)x = a — 2.

Решение. Обычно корень уравнения bx = c мы легко находим по формуле x = c/b, так как в конкретном уравнении коэффициент b отличен от нуля. В заданном уравнении коэффициент при x равен 2a(a — 1), и, поскольку значение параметра а нам неизвестно и в принципе оно может быть любым, следует предусмотреть возможность обращения указанного коэффициента в нуль. Это будет при а = 0 или при а = 2. Рассмотрим следующие случаи:

1) Если а = 0, то уравнение принимает вид 0х = 2 — это уравнение не имеет корней.

2) Если а = 2, то уравнение принимает вид 0х = 0 — этому уравнению удовлетворяют любые значения х.

3) Если а ≠ 0, а ≠ 2, то коэффициент при х отличен от нуля, и следовательно, на этот коэффициент можно разделить обе части уравнения.

Получим

Ответ: 1) если а = 0, то корней нет;

2) если а = 2, то х — любое действительное число;

3) если а ≠ 0, а ≠ 2, то х = 1/2а.


Затем в учебнике рассматривается линейное уравнение с модулем, содержащим параметр, и иррациональное уравнение:

Пример 4: Сколько корней имеет уравнение 2|x — a| = x + 1 при различных значениях параметра а?

Пример 5: Решить уравнение .

Таким образом, в учебнике для 8 класса с углубленным изучением математики задачам с параметрами отводится отдельный параграф, в котором рассматривается широкий класс уравнений с параметрами, а именно линейные и квадратные уравнения, иррациональные уравнения и уравнения, содержащие модуль. Понятие параметра вводится на основе решения примеров. Важно, что в решении уравнений с параметрами дается графическая иллюстрация решения.[19]

Заключение

В данной дипломной работе была реализована намеченная цель — разработать версию обучения учащихся решению задач с параметрами в средней школе.

При написании работы были решены поставленные задачи: изучить психолого — педагогические особенности учащихся, обосновывающие целесообразность обучения умению решать задачи с параметрами, проанализировать подходящее для этого учебное пособие по математике и программу по математике с точки зрения интересующего вопроса, составить версию обучения учащихся решению уравнений и неравенств с параметрами с подборкой основных заданий разного уровня, а также продемонстрировать важность обучения учащихся таким задачам.

Анализ психолого — педагогической литературы выявил особенности развития высших психических функций учащихся среднего школьного возраста.

Было установлено, что задачи с параметрами обладают большим потенциалом в развитии интеллектуальных качеств личности, так как развивают исследовательские способности, учат творчески мыслить, помогают сформировать и развить творческое мышление. Понимая, какое важное значение задачи с параметрами играют в развитии учащихся, и учитывая потенциальные возможности учеников среднего школьного возраста, был сделан вывод, что задачи с параметрами должны включаться в школьный курс математики, начиная с 7 класса. Конечно, уровень сложности предполагаемых заданий должен определяться уровнем подготовки всего класса в целом и каждого ученика в отдельности.


Анализ учебной литературы выявил существенные недостатки в обучении решению задач с параметрами: в общеобразовательных классах данной теме, как правило, уделяется очень мало внимания, изучение очень поверхностное; в математических классах предполагается более глубокое изучение темы, но отсутствуют точные определения рассматриваемых объектов.

В работе выделены задания для проведения отдельных дополнительных занятий, для отстающих и для сильных учеников.

Основной вывод работы — задачи с параметрами должны составлять самостоятельную линию школьного курса математики.

Библиография

Алгебра 7 кл. [Текст] / С.М. Никольский, М.К. Потапов, Н.Н. Решетников, и др.- М.: Просвещение, Московские учебники, 2000.

Алгебра 8 кл. [Текст] / С.М. Никольский, М.К. Потапов, Н.Н. Решетников, и др.- М.: Просвещение, Московские учебники, 2001.

Алгебра 9 кл. [Текст] / С.М. Никольский, М.К. Потапов, Н.Н. Решетников, и др.- М.: Просвещение, Московские учебники, 2002.

Алгебра 7 кл. [Текст]: Учебник / под ред. С.А. Теляковского.- М.: Просвещение, 2003.

Алгебра 8 кл. [Текст]: Учебник / под ред. С.А. Теляковского.-М.: Просвещение, 2003.

Алгебра 9 кл. [Текст]: Учебник / под ред. С.А. Теляковского.- М.: Просвещение, 2003.

Алимов, Ш.А., Алгебра 8 [Текст] / Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров.- М.: Просвещение, 2000.

Алимов, Ш.А. Алгебра 9 [Текст] / Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров.- М.: Просвещение, 2000.

Амелькин, В.В. Задачник с параметрами [Текст] / В.В. Амелькин, В.А. Рябцевич.- Минск.: Асар, 2002.

Виленкин, Н.Я. Алгебра для 9 класса [Текст]: Учебное пособие для учащихся шк. и кл. с углуб. изучением математики / Н.Я. Виленкин.- М.: Просвещение, 1996.