Файл: Физика твердого тела.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 128

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, в полупроводнике создается некоторая концентрация электронов niв свободной зоне и равная ей концентрация дырок piв валентной зоне (индекс iозначает, что речь идет о чистых, беспримесных полупроводниках; при этом ni, piназывают собственными концентрациями носителей заряда в полупроводнике). Концентрация носителей заряда зависит от температуры кристалла, ширины запрещенной зоны и определяется зависимостью

(1)

где А — коэффициент, числовое значение которого зависит от рода кристалла; k — 1,37·10–23 Дж/К — постоянная Больцмана; Т — абсолютная температура.

Из выражения (1) следует, что концентрация носителей заряда в полупроводнике и его электрическая проводимость увеличиваются с повышением температуры и уменьшаются с ростом ширины запрещенной зоны.

Электроны и дырки являются подвижными частицами. Постоянство их концентрации при неизменной температуре обусловливается тем, что в любом элементе объема полупроводника одновременно действуют два процесса: термогенерация носителей заряда, а также исчезновение электронов и дырок за счет возвращения электронов из зоны проводимости на вакантные уровни валентной зоны (рекомбинация носителей заряда). Соответствующая концентрация устанавливается из условия динамического равновесия, при котором число вновь возникающих носителей заряда равно количеству рекомбинирующих носителей.


ПРИМЕСНАЯ ПРОВОДИМОСТЬ ПОЛУПРОВОДНИКОВ


При производстве полупроводниковых приборов помимо чистых полупроводников, в частности чистых германия и кремния, являющихся исходными материалами, используют примесные полупроводники.

Введение примеси связано с необходимостью создания в полупроводнике преимущественно электронной либо дырочной электропроводности и увеличения электрической проводимости. В связи с этим различают соответственно электронные (n-типа) и дырочные (p-типа) полупроводники.

Для получения полупроводника с электропроводностью n-типа в чистый полупроводник вводят примесь, создающую в полупроводнике только свободные электроны. Вводимая примесь является «поставщиком» электронов, в связи, с чем ее называют донорной. Для германия и кремния, относящихся к IV группе Периодической системы элементов, донорной примесью служат элементы V группы (сурьма, фосфор мышьяк), атомы, которых имеют, пять валентных электронов.

При внесении такой примеси атомы примеси замещают атомы исходного полупроводника в отдельных узлах кристаллической решетки (рис. 2, а). Четыре электрона каждого атома донорной примеси участвуют в ковалентной связи с соседними атомами исходного материала, а пятый («избыточный») электрон, не участвующий в ковалентной связи, оказывается значительно слабее связанным со своим атомом. Для того чтобы оторвать его от атома и превратить в свободный носитель заряда, требуется значительно меньшее количество энергии, чем для освобождения электрона из ковалентной связи. В результате приобретения такой энергии (например, энергии фонона при комнатной температуре кристалла) «избыточный» электрон покидает атом и становится свободным, а атом примеси превращается в положительный ион (ионизация атома примеси). В условиях достаточно большой концентрации атомов примеси их ионизация создает некоторую концентрацию в кристалле полупроводника свободных электронов и неподвижных положительных ионов, локализованных в местах расположения атомов примеси. Слой полупроводника остается электрически нейтральным, если освободившиеся электроны не уходят за пределы слоя. При уходе электронов под воздействием каких-либо факторов в другие слои кристалла оставшиеся положительные ионы донорной примеси создают в данном слое нескомпенсированный положительный объемный заряд.



На энергетической диаграмме полупроводника n-типа (рис.2, б) вводимая примесь приводит к появлению в запрещенной зоне вблизи зоны проводимости близко расположенных друг от друга локальных валентных уровней энергии, заполненных электронами при температуре абсолютного нуля. Число локальных уровней определяется количеством атомов примеси в кристалле. На рис.2, б локальные уровни показаны пунктиром. Так как ширина ΔWд мала (в зависимости от типа исходного полупроводника и материала донорной примеси ΔWд = 0,01÷0,07 эВ), при комнатной температуре практически все электроны донорных уровней перейдут в зону проводимости и смогут участвовать в создании тока.

Концентрация электронов в зоне проводимости (свободных электронов) при этом определяется преимущественно концентрацией введенной примеси Nд, а не собственными электронами валентной зоны, преодолевающими широкую запрещенную зону ΔWз. В соответствии с этим концентрация электронов ппв полупроводнике n-типа существенно выше концентрации дырок рп, образующейся в результате перехода электронов из валентной зоны в зону проводимости.

Можно считать, что в полупроводнике n-типа ток создается в основном электронами. Другими словами, электроны в этом случае являются основными носителями заряда, а дырки — неосновными.




Рис. 2. Возникновение свободного электрона в кристалле полупроводника n-типа (а) и отражение этого процесса на энергетической диаграмме (б).

В полупроводниках p-типа введение примеси направлено на повышение концентрации дырок. Задача решается использованием в качестве примеси элементов III группы Периодической системы (индий, галлий, алюминий, бор), атомы которых имеют по три валентных электрона. При наличии такой примеси каждый ее атом образует только три заполненные ковалентные связи с соседними атомами исходного полупроводника в кристаллической решетке (рис. 2, а). Четвертая связь остается незаполненной.

Недостающий валентный электрон для заполнения связи принимается от одного из соседних атомов кристаллической решетки, так как требуемая для такого перехода энергия невелика. Переход электрона приводит к образованию дырки в ковалентной связи соседнего атома,
откуда ушел электрон, и превращению атома примеси в неподвижный отрицательный ион. В результате за счет примеси достигается повышение концентрации дырок в полупроводнике. Атомы примеси, принимающие валентные электроны соседних атомов, называют акцепторными, а саму примесь — акцепторной.

В условиях достаточно большой концентрации атомов акцепторной примеси в кристалле полупроводника создается некоторая концентрация дырок и отрицательных ионов. Пока число дырок в данном слое полупроводника остается равным числу отрицательных ионов в нем, в слое сохраняется зарядная нейтральность. Если вошедшие из других слоев электроны заполнят некоторое число существующих дефектов валентной связи (рекомбинация электронов с дырками), в данном слое появится нескомпенсированный отрицательный объемный заряд, создаваемый ионами акцепторной примеси.

Рассмотрим процесс образования дырок в полупроводнике р-типа, исходя из его энергетической диаграммы. При наличии акцепторной примеси в запрещенной зоне энергетической диаграммы исходного полупроводника вблизи валентной зоны появляются локальные уровни энергии, свободные от электронов при температуре абсолютного нуля (рис.3, б). Число локальных уровней определяется концентрацией атомов примеси в кристалле. Так как разность между энергией акцепторных уровней и энергией верхнего уровня валентной зоны мала (в зависимости от типа полупроводника и материала акцепторной примеси = 0,01÷0,07 эВ), то при комнатной температуре все акцепторные уровни будут заняты электронами, пере шедшими из валентной зоны. В валентной зоне появится большая концентрация дырок.




Рис. 3. Возникновение дырки в кристалле полупроводника р-типа (а) и отражение этого процесса на энергетической диаграмме (б).

Концентрация дырок в валентной зоне при этом определяется преимущественно концентрацией внесенной акцепторной примеси Na, а не дырками, возникающими при термогенерации носителей заряда за счет преодоления валентными электронами широкой запрещенной зоны
ΔWз. В соответствии с этим концентрация дырок рр в полупроводнике р-типа существенно больше концентрации свободных электронов пр. По этой причине ток в дырочном полупроводнике переносится в основном дырками. Дырки в этом случае являются основными носителями заряда, а электроны — неосновными носителями заряда.

Таким образом, в примесных полупроводниках концентрации основных носителей заряда (пп — электронного полупроводника и рр—дырочного полупроводника) создаются за счет внесения примеси, а концентрации неосновных носителей заряда (рп, пр — соответственно электронного и дырочного полупроводников) — за счет термогенерации носителей заряда, связанной с переходом электронов из валентной зоны в зону проводимости. Необходимая примесь вносится в количестве, при котором концентрация основных носителей заряда существенно (на два-три порядка) превышает концентрацию неосновных носителей заряда. В зависимости от концентрации введенной примеси удельная проводимость примесного полупроводника возрастает по сравнению с чистым полупроводником в десятки и сотни тысяч раз.

Характерной особенностью полупроводников рассматриваемых типов является то, что произведение концентраций основных и неосновных носителей заряда при данной температуре является постоянной величиной и определяется соотношением

, (2)

где собственные концентрации носителей заряда в чистом полупроводнике.

В соответствии с выражением концентрация неосновных носителей заряда в примесном полупроводнике меньше концентрации собственных носителей заряда в чистом полупроводнике. Это связано с тем, что с увеличением концентрации основных носителей заряда возрастает роль рекомбинаций, вследствие чего концентрация неосновных носителей заряда уменьшается. Равновесие достигается, когда при данной температуре произведение концентрации носителей заряда в примесном полупроводнике становится равным произведению концентрации носителей заряда в чистом полупроводнике.

Зависимость концентрации носителей заряда от температуры накладывает ограничения на температурный диапазон применения полупроводниковых приборов. Рабочий диапазон температур характеризуется существенным превышением в примесных полупроводниках концентрации основных носителей заряда над неосновными