Файл: Учебное пособие технология решения генетических задач.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 70
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
2.8. Алгоритм решения задач «Наследование признаков, сцепленных с полом».
-
Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А - доминантный а - рецессивный. -
Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы. -
Запишите генотип гибридов F1. -
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали. -
Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.
Тип скрещивания | Схема скрещивания | Закон. автор |
Наследование признаков, сцепленных с полом. Признаки, гены которых локализованы в половых хромосомах, называются сцепленными с полом | | Если одна из X хромосом содержит рецессивный ген, определяющий проявления аномального признака, то носителем признака является женщина, а признак проявляется у мужчин. Рецессивный признак от матерей передается сыновьям и проявляется, а от отцов передается дочерям. Примером наследования признаков, сцепленных с полом у человека, является гемофилия и дальтонизм. |
Раздел 3. Примеры решения задач по генетике
-
У дрозофилы доминантный ген красной окраски глаз (W) и рецессивный ген белой окраски (w) находятся в Х – хромосамах. Белоглазая самка скрещивалась с красноглазым самцом. Какой цвет глаз будет у самцов и самок в первом и втором поколении?
Д
Р ♀ Хw Xw × ♂ XWY
гаметы Xw XW, Y
F1 XW Xw – красноглазая самка- 50%
XwY- белоглазый самец – 50%
Р ♀ ХW Xw × ♂ XwY
гаметы Xw, XW XW, Y
F2 XW Xw – красноглазая самка - 25%
XwXw – белоглазая самка – 25%
XWY – красноглазый самец – 25%
XwY – белоглазый самец – 25%
ано:
W – красный окрас глаз
w – белый окрас глаз
Х W Х W – самки красной
Х W Х w – самка крас.
Х w Х w – самки белые глаза
Ответ: Среди потомства F1 50% будет красноглазых самок и 50% белоглазых самцов. Во втором поколении 25% - красноглазая самка, 25% - белоглазая самка, 25% - красноглазый самец, 25% - белоглазый самец.
-
У домашних кур сцепленный с Х-хромосомой ген d имеет летальное действие. Какая часть потомства погибнет, если скрестить курицу с гетерозиготным петухом?
Дано: А ген, сцепленный с Х-хромосомой d имимеет летальное действие F1 гибель-? | Решение: 1) Р ♀ XAY x ♂ XAXa G XA Y XA Xa F1 XAXA YXA XAXa YXa XAXA - норм.петух YXA норм.курица XAXa норм. петух YXa гибель |
Ответ: 25% погибнет потомства
-
У человека рецессивный ген гемофилии (h) и рецессивный ген дальтонизма (d) локализованы в X-хромосоме на расстоянии 9,8 морганид. Известно, что женщина гетерозиготна по обоим признакам, аномальные гены локализованы в разных X-хромосомах. Определите, какие дети у нее могут быть от брака со здоровым мужчиной, и какова вероятность их рождения.
Дано: Xh – гемофилия XH – норма Xd – дальтонизм XD – норма L(hd) = 9,8 мн = 9,8% кроссинговера | Решение 1) Проанализировав условие задачи, определим генотипы родителей: P: ♀ × ♂ 2) В результате кроссинговера с общей вероятностью 9,8% у матери образуется два новых типа гамет – кроссоверные гаметы. Вероятность появления каждого из типов кроссоверных гамет – = 4,9%. На долю некроссоверных гамет остается 100 – 9,8 = 90,2%, на каждый тип некроссоверных гамет по = 45,1%. Вероятность проявления каждой из гамет отца – 50%. G:
3) Определим вероятность появления детей с различными сочетаниями исследуемых признаков. Для этого по теореме умножения вероятностей вычислим произведение вероятностей материнской и отцовской гамет. F1: = = 22,55% – здоровая девочка = = 22,55% – мальчик с гемофилией = = 22,55% – здоровая девочка = = 22,55% – мальчик-дальтоник = = 2,45% – здоровая девочка = = 2,45% – здоровый мальчик = = 2,45% – здоровая девочка = = 2,45% – мальчик-дальтоник с гемофилией | ||||||||||
F1 – ? |
Ответ: вероятность рождения здоровой девочки в данном браке – 50%; вероятность рождения здорового мальчика – 2,45%; вероятность рождения мальчика с гемофилией – 22,55%; вероятность рождения мальчика-дальтоника – 22,55%; вероятность рождения мальчика-дальтоника с гемофилией – 2,45%.
-
У коров гены A и B расположены в одной хромосоме на расстоянии 24 морганиды. Определите генотипические группы потомков и вероятности их появления при скрещивании двух дигетерозигот с генотипом .
Дано: L(AB) = 24 мн = 24% кроссинговера | Решение 1) P: ♀ × ♂ 2) В результате кроссинговера с общей вероятностью 24% у матери и отца образуется два новых типа гамет – кроссоверные гаметы. Вероятность появления каждого из типов кроссоверных гамет – = 12%. На долю некроссоверных гамет остается 100 – 24 = 76%, на каждый тип некроссоверных гамет по 38%. G :
3) Определим вероятность появления детей с различными сочетаниями исследуемых признаков. Для этого по теореме умножения вероятностей вычислим произведение вероятностей материнской и отцовской гамет. F1:
| ||||||||||||||||||||||||||||||||
F1 – ? |
Ответ: в потомстве наблюдается 16 групп генотипов; вероятность проявления генотипа = 14,44%, = 14,44%, = 4,56%, = 4,56%, = 14,44%, = 4,44%, = 4,56%, = 4,56%, = 4,56%, = 4,56%, = 1,44%, = 1,44%, = 4,56%, = 4,56%, = 1,44%, = 1,44%.
Заключение.
Дорогие ребята!
Это пособие создавалось в первую очередь для вас.
Практика показывает, что именно умение решать задачи вызывает у вас наибольшие затруднения.
Если вы хотите научиться решать задачи по генетике, следуйте советам:
-
Каждая гамета получает гаплоидный набор хромосом (генов). Все хромосомы (гены) имеются в гаметах. -
В каждую гамету попадает только одна гомологичная хромосома из каждой пары (только один ген из каждой аллели). -
Число возможных вариантов гамет равно 2n, где n – число хромосом, содержащих гены в гетерозиготном состоянии. -
Одну гомологичную хромосому (один аллельный ген) из каждой пары ребенок получает от отца, а другую (другой аллельный ген) – от матери. -
Гетерозиготные организмы при полном доминировании всегда проявляют доминантный признак. Организмы с рецессивным признаком всегда гомозиготны. -
Решение задачи на дигибридное скрещивание при независимом наследовании обычно сводится к последовательному решению двух задач на моногибридное (это следует из закона независимого наследования).
Кроме того, для успешного решения задач по генетике
следует уметь выполнять некоторые несложные операции и использовать методические приемы, которые приводятся ниже.
Прежде всего необходимо внимательно изучить условие задачи. Даже те учащиеся, которые хорошо знают закономерности наследования и успешно решают генетические задачи, часто допускают грубые ошибки, причинами которых является невнимательное или неправильное прочтение условия.
Следующим этапом является определение типа задачи. Для этого необходимо выяснить, сколько пар признаков рассматривается в задаче, сколько пар генов кодирует эти признаки, а также число классов фенотипов, присутствующих в потомстве от скрещивания гетерозигот или при анализирующем скрещивании, и количественное соотношение этих классов. Кроме того, необходимо учитывать, связано ли наследование признака с половыми хромосомами, а также сцепленно или независимо наследуется пара признаков. Относительно последнего могут быть прямые указания в условии. Также, свидетельством о сцепленном наследовании может являться соотношение классов с разными фенотипами в потомстве.
Для облегчения решения можно записать схему брака (скрещивания) на черновике, отмечая фенотипы и генотипы особей, известных по условию задачи, а затем начать выполнение операций по выяснению неизвестных генотипов. Для удобства неизвестные гены на черновике можно обозначать значками *, _ или ?.
Выяснение генотипов особей, неизвестных по условию, является основной методической операцией, необходимой для решения генетических задач. При этом решение всегда надо начинать с особей, несущих рецессивный признак, поскольку они гомозиготны и их генотип по этому признаку однозначен – аа.
Выяснение генотипа организма, несущего доминантный признак, является более сложной проблемой, потому что он может быть гомозиготным (АА) или гетерозиготным (Аа).
Гомозиготными (АА) являются представители «чистых линий», то есть такие организмы, все предки которых несли тот же признак. Гомозиготными являются также особи, оба родителя