ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 19.03.2024
Просмотров: 355
Скачиваний: 0
буде трикутник S2C2D2. На фронтальній площині проекції П2 визначають точки перетину 1 і 2 прямої АВ з трикутником. Це будуть точки перетину прямої з поверхнею конуса, тому що сторони трикутника є твірними конуса.
Рисунок 9.3
Задача 4. Побудувати точки перетину прямої АВ з поверхнею сфери
(рис. 9.4).
Розв’язування. Цю задачу можна розв’язати способом заміни площини проекції. Січна площина перетинає поверхню сфери по колу. Натуральну величину фігури перерізу знаходять на додатковій площині проекції П4. Відрізок АВ проекціюється на П4 в натуральну величину. Там, де проекція відрізка А4В4 перетинає коло, визначають точки 14 і 24. Потім точки 1 і 2 проекціюють на П1 і П2 і визначають видимість прямої відносно поверхні сфери.
119
Рисунок 9.4
Задача 5. Побудувати точку перетину прямої АВ з відкритим тором
(рис. 9.5).
Розв’язування. Для побудови точок перетину М і N прямої АВ з поверхнею тора використовують метод обертання. Пряма АВ проходить через вісь обертання відкритого тора. Пряму АВ обертають навколо осі і. Точка В залишається нерухомою, а точка А на П2 переміщується по колу і суміщається з площиною П1. На П1 горизонтальна проекція точки А переміщується по лінії, паралельно осі х1,2. Так визначається проекція А’1 точки після повороту точки А. На П1 визначають точки перетину відрізка А’1 В1 з колом (твірною тора) М’1 і N’1. Ці точки переміщують по горизонтальних лініях зв’язку на відрізок А1В1 і отримують точки М1 і N1. Точки М і N проекціюють на П2 на фронтальну проекцію відрізка А2В2. Потім на горизонтальній і фронтальній площинах проекцій визначають видимість відрізка АВ відносно поверхні тора.
120
Рисунок 9.5
Задача 6. Побудувати точку перетину прямої l з конусом (рис. 9.6). При розв’язанні цієї задачі через l можна провести допоміжну січну
площину окремого положення, яка при перерізі конуса утворює криву лінію. Найпростішим способом розв’язання цієї задачі є такий, у якому через пряму l проводиться допоміжна січна площина загального положення. Ця площина обов’язково повинна проходити через вершину конуса, утворюючи при його перерізі на поверхні конуса трикутник.
Розв’язування. 1. Через вершину конуса S проводять пряму m, яка перетинається з прямою АВ в точці А. Отримують площину, задану двома прямими АВ і m, що перетинаються.
2.Будують горизонтальний слід січної площини. Для цього визначають горизонтальні сліди прямих АВ і m та з’єднують їх.
3.Зважаючи на те, що основа конуса і горизонтальний слід січної площини лежать в П1, помічають точки перетину сліду січної площини з основою конуса. З’єднавши ці точки з вершиною конуса, отримують переріз конуса – трикутник.
121
4. Визначають точки перетину 1,2 прямої АВ з перерізом (трикутником SCD) і визначають видимість прямої.
Рисунок 9.6
Задача 7. Побудувати точки перетину прямої загального положення АВ з циліндром (рис. 9.7).
Розв’язування. У цій задачі проводять допоміжну січну площину загального положення паралельно до твірних циліндра. Ця площина задається двома прямими АМ і АN. При перерізі циліндра такою площиною на його поверхні утворюється паралелограм. Позначають точки перетину C і D відрізка АВ з циліндром і визначають видимість прямої відносно поверхні циліндра.
122
Рисунок 9.7
У загальному випадку точки перетину прямої з кривою поверхнею або багатогранником можуть бути визначені за допомогою січної площини, що проводиться через пряму.
Алгоритм розв’язування задачі
1.Через дану пряму, яка перетинає поверхню, проводять допоміжну січну площину (площину окремого положення).
2.Будують лінію перетину (фігуру перерізу) поверхні з січною площиною. На кривій поверхні фігура перерізу – це плоска крива лінія другого порядку, на багатограннику – це багатокутник.
3.Знаходять точки перетину прямої з фігурою перерізу.
123
4. Визначають видимість прямої відносно поверхні.
При виборі допоміжної площини слід враховувати, що ця площина при перетині з поверхнею повинна давати такі лінії, як коло, трикутник, паралелограм тощо.
На рисунку 9.8 показано приклад перетину прямої загального положення з поверхнею тора.
Рисунок 9.8
9.2 Перетин прямої лінії з багатогранником
Задача 1. Побудувати точки перетину прямої загального положення l з нахиленою призмою (рис. 9.9).
Розв’язування.
Через пряму l проводять фронтально-проекціювальну площину α. На П2 визначають точки перетину площини α з боковими ребрами призми: α∩АD=1, α∩CF=2, α∩ВE=3. Отримані точки 1, 2, 3 проекціюють на П1 на відповідні ребра. Горизонтальні проекції точок 11, 21, 31 з’єднують і отри-
124
мують фігуру перерізу – трикутник. На П1 відмічають точки перетину М1 і N1 з трикутником 11 21 31 . Фронтальні проекції точок М2 і N2 визначають там, де лінії зв’язку перетинають проекцію прямої l2. Визначають видимість прямої відносно поверхні призми.
Рисунок 9.9
Запитання для самоконтролю
1.Яка послідовність знаходження точок перетину прямої лінії з поверхнею?
2.Які площини бажано використовувати для побудови точок перетину прямої з поверхнею?
3.Яка послідовність побудови точок перетину прямої загального положення з конусом?
4.Яким способом можна розв’язати задачу побудови точок перетину прямої загального положення з поверхнею обертання другого порядку?
125
10 ПЕРЕТИН ПОВЕРХОНЬ
У задачах конструювання складних форм машинобудівних виробів або інженерних конструкцій виникає необхідність у побудові ліній перетину простих форм, які утворюють ці складні форми. Лінію, яка утворюється як множина спільних точок двох поверхонь, що перетинаються, на-
зивають лінією перетину поверхонь.
Для побудови точок лінії взаємного перетину двох поверхонь застосовують два способи: перетворення проекцій та допоміжних перерізів.
10.1 Метод допоміжних січних площин
Для побудови лінії перетину двох поверхонь використовують допоміжні січні площини окремого положення. Цей метод застосовують у тому випадку, коли фігура перерізу буде мати просту для побудови лінію (коло або пряму лінію).
Розглянемо цей метод на прикладі розв’язання задачі побудови лінії перетину циліндра і півсфери (рис. 10.1).
Розв’язання задачі розпочинають з аналізу умови. Оскільки циліндр займає фронтально-проекціювальне положення, то фронтальна проекція лінії перетину співпадає з проекцією циліндра. Спочатку на П2 визначають опорні точки А2 і В2, там де перетинаються контури поверхонь. Для побудови поточних точок лінії перетину використовують горизонтальні допоміжні січні площини α, β, γ. За допомогою площини α будують точки 1, 2, 9, 10. Ці точки знаходяться на контурних твірних циліндра і визначають видимість лінії перетину. Всі інші поточні точки будують за допомогою горизонтальних січних площин β і γ. Отримані точки з’єднують плавною кривою, враховуючи їх видимість. Метод січних площин можна також використовувати при побудові лінії перетину поверхні обертання з гранними поверхнями.
Задача 1. Побудувати лінію перетину прямого кругового конуса з фронтально-проекціювальним циліндром (рис. 10.2).
Розв’язування. На фронтальній площині проекції П2 циліндр відображається в коло, а конус в трикутник. На перетині цих контурних ліній визначають опорні точки F й E. За допомогою горизонтальних січних площин α і β будують поточні точки A, B, C, D. Точки C, D знаходяться в площині β, яка проходить через вісь обертання циліндра і розділяє циліндричну поверхню на дві частини – видиму і невидиму. Точки лінії перети-
ну, які знаходяться вище точок |
C, D |
на П1 будуть видимі, а точки, що |
знаходяться нижче точок C, D |
на П1 |
будуть невидимі. |
126
Рисунок 10.1
127
Рисунок 10.2
Задача 2. Побудувати лінію перетину прямого кругового конуса зі сферою (рис. 10.3).
Розв’язування. Опорні точки А й В можна побудувати за допомогою способу заміни площин проекцій. Ці точки знаходяться в площині симетрії Σ, що проходить через осі обертання сфери і конуса. Площина Σ займає положення горизонтально-проекціювальне. Точки А й В знаходять на П4 на перетині контурних ліній сфери і конуса. Всі інші точки лінії перетину можна будувати за допомогою горизонтальних січних площин.
128
Рисунок 10.3
Задача 3. Побудувати лінію перетину півсфери з горизонтальнопроекціювальним циліндром (рис. 10.4).
Розв’язування. На рисунку показано приклад перетину циліндра і півсфери. Крива поверхня циліндра відображається на П1 в коло. Тому лінія перетину двох поверхонь співпадає з цим колом. Саму низьку точку 1 і найвищу точку 2 будують там, де горизонтально-проекціювальна площина проходить через осі обертання циліндра і півсфери. Всі інші точки будують за допомогою фронтальних допоміжних січних площин.
129