ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.04.2024
Просмотров: 454
Скачиваний: 0
СОДЕРЖАНИЕ
1. Единицы измерения информации.
2. Понятия прагматического и семантического подходов к измерению информации.
4. Исторические этапы развития вычислительной техники, состояние, перспективы.
5. Сравнительный анализ структурных схем эвм 1-2 поколений с современными компьютерами.
6. Состав современного вычислительного комплекса, общая характеристика.
7. Обоснование системы счисления, применяемой в современном компьютере.
8. Перевод чисел из одной системы счисления в другую.
9. Формы представления чисел в компьютере.
10. Кодирование текстовой, графической и звуковой информации в компьютере.
11. Понятие логических связей «и», «или», «не» и их роль в эвм.
12. Типы и функциональные характеристики современных микропроцессоров.
13. Функции и хар-ки системной платы, шины.
14. Кэш – память, ее назначение, характеристика.
16. Назначение, разновидности и основные характеристики накопителей на жестких и гибких дисках.
17. Структура записи информации на магнитные и оптические диски. Понятие дорожек, сектора, кластера.
18. Накопители на оптических и магнитно-оптических дисках.
19. Форматирование дисков, его назначение, организация расположения файлов.
20. Назначение, разновидности и основные характеристики видеомониторов.
21. Назначение, разновидности, основные характеристики принтеров.
23. Общая характеристика программного обеспечения компьютера.
24. Классификация программных продуктов.
25. Исторический аспект развития системного программного обеспечения.
26. Базовое системное обеспечение.
27. Сервисное системное обеспечение.
28. Антивирусные программы, их характеристика.
29. Архиваторы, их назначение, характеристики.
30. Утилиты обслуживания дисков, их назначение, характеристика.
31. Понятие файла, его идентификация, атрибуты, расположение на диске, указание пути.
32. Файлы данных, их типы, понятия физического и логического устройства.
33. Характеристика файловой системы ms-dos, Windows.
34. Общая характеристика операц. Среды Windows – 95, 98, 2000
35. Общая характеристика инструментальных средств программирования.
36. Классификация пакетов прикладных программ (ппп).
1.Проблемно-ориентированные ппп
2. Ппп автоматизированного проектирования
6. Настольные издательские системы
7. Программные средства мультимедиа
8. Системы искусственного интеллекта
37. Назначение и общая характеристика пакета прикладных программ Office.
41. Основные подходы к выбору характеристик персонального компьютера.
42. Понятие алгоритма, его свойства.
43. Формы представления алгоритма.
44. Основные типы вычислительных процессов (управляющие структуры алгоритмов).
45. Основные этапы подготовки решения задач эвм.
47. Трансляторы, их виды, краткая характеристика. Содержание трансляции.
48. Информационные технологии dde, ole. Примеры их применения.
50. Понятие и назначение базы данных.
51. Функциональные возможности субд.
52. Основные типы систем управления базами данных.
53. Различие архитектур баз данных: клиент-сервер и файл-сервер.
54. Особенности и назначение реляционной базы данных.
55. Краткая характеристика, назначение и взаимосвязь структурных элементов базы данных.
56. Нормализация отношений, нормальные формы реляционной бд.
57. Понятие ключа бд, его назначение.
58. Функционально-логические связи между таблицами базы данных.
59. Информационно-логическая модель базы данных.
60. Понятие целостности данных, ее роль в работе с базой данных.
61. Понятие поля базы данных, его тип, свойства.
62. Формы, отчеты, запросы в субд Access, их назначение, методы создания.
63. Характеристика, назначение современных субд.
64. Субд Access, ее характеристика, возможности.
65. Назначение и классификация компьютерных сетей.
66. Основные типы топологии локальных вычислительных сетей, характеристика, критический анализ.
13. Функции и хар-ки системной платы, шины.
Системная шина. Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.
Системная шина включает в себя:
- кодовую шину данных (КШД), содержащую провода и схемы сопряжения для- параллельной передачи всех разрядов числового кода (машинного слова) операнда;
- кодовую шину адреса (КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода- вывода внешнего устройства;
- кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины;
И шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к
системе энергопитания.
Системная шина обеспечивает три направления передачи информации:
1) между микропроцессором и основной памятью;
2) между микропроцессором и портами ввода-вывода внешних устройств;
З) между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).
Все блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором ] либо непосредственно, либо, что чаще, через дополнительную микросхему — контроллер шины, формирующий основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием АSСII-кодов.
Конструктивно ПК выполнены в виде центрального системного блока, к которому через разъемы подключаются внешние устройства: дополнительные устройства памяти, клавиатура, дисплей, принтер и др.
Системный блок обычно включает в себя системную плату, блок питания, накопители на дисках, разъемы для дополнительных устройств и платы расширения с контроллерами — адаптерами внешних устройств.
На системной плате (часто ее называют материнской), как правило, размещаются:
- микропроцессор;
- математический сопроцессор;
- генератор тактовых импульсов;
- блоки (микросхемы) ОЗУ и ПЗУ;
- адаптеры клавиатуры, НЖК’Щ и НГМД;
- контроллер прерываний;
- таймер и др.
14. Кэш – память, ее назначение, характеристика.
Кэш — промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из медленной памяти или их перевычисление, что делает среднее время доступа короче.
Кэш — это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа. Кэширование применяется ЦПУ, жёсткими дисками, браузерами и веб-серверами.
Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор, определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.
Регистровая кэш-память – высокоскоростная память сравнительно большой емкости, являющаяся буфером между ОП и МП и позволяющая увеличить скорость выполнения операции. Создавать ее целесообразно в ПК с тактовой частотой задающего генератора 40 МГц и более. Регистры КЭШ-памяти недоступны для пользователя, отсюда и название КЭШ , в переводе с английского означает “тайник”.
В КЭШ-памяти хранятся данные, которые МП получил и будет использовать в ближайшие такты своей работы. Быстрый доступ к этим данным и позволяет сократить время выполнения очередных команд программы. При выполнении программы данные, считанные из ОП с небольшим опережением, записываются в КЭШ-память.
По принципу записи результатов различают два типа КЭШ-памяти:
КЭШ-память “с обратной записью” — результаты операций прежде, чем их записать в ОП, фиксируются в КЭШ-памяти, а затем контроллер КЭШ-памяти самостоятельно перезаписывает эти данные в ОП;
КЭШ-память “со сквозной записью” — результат операций одновременно, параллельно записываются и в КЭШ-память, и в ОП.
Микропроцессоры начиная от МГI 80486 имеют свою встроенную КЭШ-память (или КЭШ - память 1 -г о уровня), чем, в частности, и обусловливается их высокая Производительность. Микропроцессоры Pentium и Pentium Рго имеют КЭШ-память отдельно для данных и отдельно для команд, причем если у Репiцлт емкость этой памяти небольшая — по 8 Кбайт, то у Pentium Рго она достигает 256—512 Кбайт.
Следует иметь в виду, что для всех МП может использоваться дополнительная КЭШ-память (КЭШ- память 2- г о уров ня), размещаемая на материнской штате вне МП, емкость которой может достигать нескольких мегабайтов.
Чем больше кэш-память, тем больше инф-ции может быть размещено в ней. В ней хранятся данные, которые микропроцессор получил и будет использовать в ближайшие такты своей работы. Быстрый доступ к этим данным позволяет сократить время выполнения очередных команд программы.
15. Озу, назначение, хар-ки.
Основная память включает:
Оперативное запоминающее устройство, которое является энергозависимым, т. е. при выключении питания компьютера вся информация, хранящаяся в нем, пропадает.
Постоянное запоминающее устройство энергонезависимо. В нем хранится информация, которую никогда не потребуется изменить. Это прежде всего - конфигурация (список устройств и их параметры) компьютера и программа тестирования устройств перед загрузкой операционной системы. Помимо того, в постоянном запоминающем устройстве хранится один из структурных компонентов операционной системы - так называемая базовая система ввода/вывода (BIOS).
Оперативное запоминающее устройство характеризуется емкостью, т. е. наибольшим объемом данных, выраженным в единицах информации, который может хранится в запоминающем устройстве. Ёмкость ОЗУ выражают в килобайтах , мегабайтах или гигабайтах.
Оперативная память — это совокупность специальных электронных ячеек, каждая из которых может хранить конкретную комбинацию из нулей и единиц — один байт. Эти ячейки нумеруются порядковыми номерами, начиная с нуля: 0, 1,2,32000,32001, ... Номер ячейки называется адресом того байта, который записан в ней в данный момент.
Оперативную память сокращенно называют ОЗУ (оперативное запоминающее устройство). Принципиальной особенностью ОЗУ является его способность хранить информацию только во время работы машины. Когда вы включаете компьютер, в оперативную память заносятся (загружаются) цепочки байтов, в которых хранится операционная система. далее, по вашим указаниям, в ОЗУ с магнитного диска помещаются прикладные программы и данные, обрабатываемые этими программами. Содержимое многих ячеек памяти (байтов) постоянно изменяется в процессе работы программ. для пользователя результаты обработки обретают завершенный вид, если они
оформлены и выданы в определенном виде на экран, принтер, графопостроитель и т. п. или записаны для постоянного хранения на магнитный диск. После загрузки новой программы, прежнее содержимое ОЗУ замещается новым, а после выключения машины пропадает вовсе.
Процессор берет из ОЗУ код команды и после обработки данных результат обратно помещается в ОЗУ. Озу является гибкой стр-рой и обладает возможность перезаписывать инф-цию в свои ячейки неогранич. число раз по ходу выполнения программы. ОЗУ играет значит. роль в ходе формир-я виртуальных адресов. «+» - высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно.
16. Назначение, разновидности и основные характеристики накопителей на жестких и гибких дисках.
На гибком магнитном диске (дискете) магнитный слой наносится на гибкую основу. Используемые в ПК ГМД имеют форм-фактор 5,25” и 3,5”. Емкость ГМД колеблется в пределах от 180 Кбайт до 2,88 Мбайта. ГМД диаметром 5,25 дюйма помещается в плотный гибкий конверт, а диаметром 3,5 дюйма — в пластмассовую кассету для защиты от пыли и механических повреждений.
Конструктивно дискета диаметром 133 мм изготовляется из гибкого пластика (лавсана), покрытого износоустойчивым ферролаком, и помещается в футляр-конверт. дискета имеет две прорези: центральное отверстие для соединения с дисководом и смещенное от центра небольшое отверстие (обычно скрытое футляром), определяющее радиус-вектор начала всех дорожек на ГМД. Футляр также имеет несколько прорезей: центральное отверстие, чуть большее, чем отверстие на дискете; широкое окно для считывающих и записывающих магнитных головок и боковую прорезь в виде прямоугольника, закрытие которой липкой лентой, например, защищает дискету от записи и стирания информации.
Дискета диаметром 89 мм имеет более жесткую конструкцию, более тщательно защищена от внешних воздействий, но в принципе имеет примерно те же конструктивные элементы. Режим запрета записи на этих дискетах устанавливается специальным переключателем, расположенным в одном из углов дискеты.
Накопители на жестких магнитных дисках.
В качестве накопителей на жестких магнитных дисках (НЖМД) широкое распространение в ПК получили накопители типа “винчестер”.
Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IВМ, 1973 г.), имевшего ЗО дорожек по 30 секторов, что случайно совпало с калибром “30(3 0” известного охотничьего ружья “Винчестер”.
В этих накопителях один или несколько жестких дисков, изготовленных из сплавов алюминия или из керамики и покрытых ферролаком, вместе с блоком магнитных головок считывания/записи помещены в герметически закрытый корпус. Емкость этих накопителей благодаря чрезвычайно плотной записи, получаемой в таких несъемных конструкциях, достигает нескольких тысяч мегабайт; быстродействие их также значительно более высокое, нежели у НГМд.
НЖМД весьма разнообразны. Диаметр дисков чаще всего 3,5” (89 мм), но есть и другие, в частности 5,25” (133 мм) и 1,8” (45 мм). Наиболее распространенная высота коруса дисковода 25 мм у настольных ПК, 41 мм — у машин-серверов, 12 мм — у портативных Г11( и др.