Файл: В.М. Волков Математика. Программа, контрольные работы №7, 8 и методические указания для студентов-заочников инженерно-технических специальностей 2 курса.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.06.2024
Просмотров: 107
Скачиваний: 0
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
x |
|
|
5 |
|
|
a)∫∫ |
(x |
+ |
2y)dxdy,D = −1 |
≤ x ≤ 3, |
|
−1 |
≤ y |
≤ |
|
+ |
|
|
. |
||||||
|
2 |
2 |
|
|||||||||||||||||
135. |
D |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|||
|
|
|
x |
|
|
dxdy,D ={x2 |
|
|
≤ π2 ,x ≥ 0}. |
|
|
|
|
|
|
|||||
|
б)∫∫ |
|
|
|
|
+ y2 |
|
|
|
|
|
|
||||||||
|
x |
2 |
+ y |
2 |
|
|
|
|
|
|
||||||||||
|
D |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
2x |
|
|
|
x |
|
|
|
|
|
|
|
|
a)∫∫ |
(2x + y)dxdy,D = y ≤ − |
|
+ 6,y ≥ |
|
− |
1,x ≥ |
3 . |
||||||||||||
|
3 |
2 |
||||||||||||||||||
136. |
D |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
y |
|
|
dxdy,D ={x2 |
|
|
≤ π2 ,y ≥ 0}. |
|
|
|
|
|
|
|||||
|
б)∫∫ |
|
|
|
|
+ y2 |
|
|
|
|
|
|
||||||||
|
x |
2 |
+ y |
2 |
|
|
|
|
|
|
||||||||||
|
D |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a)∫∫2ydxdy,D ={y ≤ x,y ≥ 0,x + y ≤ 2}.
D
137.
б)∫∫
D
a)∫∫
D
138.
б)∫∫
D
a)∫∫
139. D
б)∫∫
D
a)∫∫
(x |
2 |
|
+ y |
2 |
|
|
|
2 |
+ y |
2 |
≤ 2, |
x |
|
|
|
|
|
|
|
) dxdy,D = x |
|
|
3 |
≤ y ≤ x . |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x2 |
|
|
|
|
1 |
,y ≤ x,Mx |
|
|
|
|
|
|||||
y2 |
dxdy,D = y ≥ |
x |
≤ 2 . |
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
cos |
x2 + y2 |
|
|
|
|
π2 |
≤ x2 + y2 |
≤ π2 |
|
|||||||
|
|
|
|
|
dxdy,D = |
|
4 |
. |
||||||||
|
|
|
x2 + y2 |
|
|
|
|
|
|
|
|
|
||||
exdxdy,D ={y ≥ ex ,x ≥ 0,y ≤ 2}. |
|
|
|
|
||||||||||||
x2 + y2 dxdy,D ={4 ≤ x2 + y2 ≤16}. |
|
|
||||||||||||||
(x2 |
|
+ y)dxdy,D ={y ≥ x2 ,y2 ≤ x}. |
|
|
|
|
140. |
D |
б)∫∫ x2 + y2 − 9 dxdy,D ={9 ≤ x2 + y2 ≤ 25}. |
a)∫∫D cos(x + y)dxdy,D ={x ≥ 0,y ≤ π,y ≥ x}.
D
141. б)∫∫
D
a)∫∫
D
142.
б)∫∫
D
a)∫∫
1 |
dxdy,D ={x2 + y2 ≤ R2 ,x ≥ 0,y ≥ 0}. |
R2 − x2 − y2 |
|
(2x + y)dxdy,D ={x − 2y ≤ −5,4x − y ≥ −6,Mx ≤ 0}. |
|
x2 + y2 |
dxdy,D ={1 ≤ x2 + y2 ≤ 4,0 ≤ y ≤ x}. |
x2 |
|
xdxdy,D ={x + y ≤ 2,x ≥1,y ≥ 0}.
143. |
D |
|
|
|
|
|
|
|
|
|
|
б)∫∫arctg |
y |
|
≤ x |
2 |
+ y |
2 |
≤ 9, |
x |
≤ y ≤ |
|
|
|
x |
dxdy,D = 1 |
|
|
3 |
3x . |
|||||
|
D |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
||
|
|
|
|
|
|
|
≤ x ≤ |
π |
|
|
|||
|
a)∫∫xydxdy,D = y ≥ sin x,0 |
2 |
,y ≤ 3 . |
||||||||||
144. |
D |
|
|
|
|
|
|
|
|
|
|
||
б)∫∫ |
R2 − x2 − y2 |
dxdy,D ={x2 |
+ y2 ≤ R2 ,y ≥ 0}. |
||||||||||
|
|||||||||||||
|
a)∫∫D (2x + y)dxdy,D ={y ≥ x,1 ≤ x ≤ 3,y ≤ x + 5}. |
||||||||||||
145. |
D |
1 − x2 − y2 dxdy,D ={x2 + y2 |
≤1,x ≥ 0,y ≥ 0}. |
||||||||||
б)∫∫ |
|||||||||||||
|
D |
|
|
|
|
|
|
|
|
|
|
|
|
|
a)∫∫(x + y2 )dxdy,D ={y ≥ x3 ,y ≥ −x,y ≤1}. |
||||||||||||
146. |
D |
|
|
|
|
|
|
|
|
|
|
|
|
б)∫∫(x2 + y2 )4 dxdy,D ={x2 |
+ y2 |
≤1,y ≥ 0}. |
|||||||||||
|
D |
|
|
|
|
|
|
|
|
|
|
|
|
|
a)∫∫xdxdy,D ={0 ≥ x ≤ 4,0 ≤ y ≤ 2x }. |
|
|||||||||||
147. |
D |
|
|
|
|
|
|
|
|
|
|
|
|
б)∫∫(x2 + y2 )5 dxdy,D ={x2 |
+ y2 |
≤1,y ≥ 0}. |
|||||||||||
|
D |
y2 |
|
|
|
|
|
|
|
|
|
||
|
∫∫D |
|
|
|
|
|
|
|
|
|
|||
|
a) |
x |
dxdy,D ={y ≥ x,0 |
≤ x ≤ 5,y ≤ 3x}. |
|||||||||
148. |
|
||||||||||||
∫∫ |
4 − x2 − y2 dxdy,D = {x2 + y2 |
≤ 4,y ≥ 0}. |
|||||||||||
|
б) |
||||||||||||
|
a)∫∫D (x + y)dxdy,D ={y ≤ ln x,x ≤ e,y ≥ 0}. |
||||||||||||
149. |
D |
|
|
|
|
|
|
|
|
|
|
|
|
б)∫∫ |
1 |
dxdy,D ={x2 |
+ y2 |
≤16,x ≥ 0,y ≥ 0}. |
|||||||||
|
D |
25 − x2 − y2 |
|
|
|
|
|
|
|
|
|
||
|
a)∫∫ |
|
|
|
≥ |
1 |
x |
2 |
,y |
≤ |
x |
|
|
|
(x + 2y)dxdy,D = y |
8 |
|
. |
|||||||||
150. |
D |
|
|
|
|
|
|
|
|
|
|
||
б)∫∫(x2 + y2 )3 dxdy,D ={x2 |
+ y2 |
≤ 4,y ≥ 0}. |
D
Контрольная работа №8
Обыкновенные дифференциальные уравнения
1-30. Найти общее решение дифференциального уравнения первого порядка
1. |
y |
− x = 0 . |
16. |
y2 + x2 y′ = xyy′. |
||
y′ + x |
|
|
|
|
||
2. |
(x2 + y2 )dy = 2xydx . |
17. |
y′ − |
1 − 2x |
y = 1. |
|
|
||||||
|
|
|
|
|
x2 |
3. y′ + ay = emx .
4.ydy + (x − 2y)dx = 0 .
5.xdy = (x + y)dx .
6.y − x y′ = yln xy .
7.(1 − x2 )y′ − xy = 1.
8.y − x y′ = x + yy′.
9.xdy − ydx = ydy .
10.dxdy − x + y = 0 .
11.(x − y)y − x2y′ = 0 .
12.xdy − 2ydx = ydy .
13.y′ + 3y + x = 0 .
14.(y2 − 3x2 )dx + 2xydy = 0.
15. y′ + 2y = e−x .
36
18. |
|
y |
. |
xy′ = y − xe |
x |
||
19. |
y′ + 2xy − x3 |
= 0 . |
20.(y − x)dx = (x + y)dy .
21.y′ − y = xex .
22.ydx + (2 xy − x)dy = 0 .
23.(1 + x2 )y′ − 2xy = (1 + x2 )2 .
24.y′ = tg xy + xy .
25.(x + 2y)ydx = x2dy .
26.y′ − x = y .
27.y′ lnx + xy = x .
28.y′ cosx − y sinx = x .
29. |
y′ arctgx + |
|
y |
= 2x . |
|
+ x2 |
|||
|
1 |
|
||
30. |
2xy′ − yy′ = y . |
|
31-60. Найти общее решение дифференциального уравнения, используя метод понижения порядка уравнения
31. |
y′′ = y′ + x . |
32. |
x |
y′′ = 2yy′ . |
|
33. |
x(yy′′ + y′2 )= 2yy′, ( подстановка z = yy′ ). |
34.yy′′ = (y′)2 .
35.xy′′ − 2y′ + x = 0 .
36.y′′ = − yx′ .
37.yy′′ = y2y′ + y′2 .
38.yy′′ + y′2 = 1.
37
39.x2y′′ + xy′ = 1.
40.y′′ = yy′ + y′.
41.y′′ = x − y′.
42.y′′2 = y′.
43.xy′′ = y′ + x sin xy .
44.y′′ y3 = 1.
45.y′′(ex + 1)+ y′ = 0 .
46.xy′′ = y′ + x .
47.2xy′ y′′ = y′2 − 1.
48.yy′′ = y′2 − y′3 .
49. yy′′ + y′2 = x , ( подстановка z = yy′ ).
50.x y′′ + x y′ − y′ = 0 .
51.x y′′ = 1 − y′.
52.(1 − x2 )y′′ − xy′ = 2.
53.y′′ − 2ctgx y′ = sin3 x.
54.2y y′′ − 3y′2 = 4y2 .
55.x(y′′ + 2)− y′ = 0 .
56.x2 y′′ = 2 − xy′ .
57.x y′′ = y′ ln yx′ .
58.x3 y′′ + x2 y′ − 1 = 0 .
59.y′′ = y′ + x2 .
xy′
60.(1 + x2 )y′′ + 2xy′ = x3 .
61-90. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям
61. |
y′′ + 9y = cos3x, y( |
0)= 2, y′(0)= 3. |
|
62. |
y′′ − 6y′ + 9y = 2e3x , |
y(0)= 1, |
y′(0)= 0. |
63. |
y′′ − 2y′ + y = xex , |
y(0)= 5, |
y′(0)= 3 . |
|
|
|
|
|
|
|
|
|
38 |
|
|
64. |
y′′ + y′ = x2 − 5, |
y(0)= 0, |
y′(0)= 2. |
|
|||||||
65. |
y′′ + 4y′ + 29y = x2 − x, |
y(0)= 5, |
y′(0)= 0 . |
||||||||
66. |
y′′ + 3y′ + 2y = 3e−x , |
|
y(0)= 1, |
y′(0)= 4 . |
|||||||
67. |
y′′ + 2y′ = x2 + 3x + 4, |
|
y(0)= −1, |
y′(0)= 4 . |
|||||||
68. |
y′′ − y′ − 6y = −2e3x , |
|
y(0)= −3, |
y′(0)= 1. |
|||||||
69. |
y′′ + y′ − 2y = (x − 2)ex , |
y(0)= 3, |
y′(0)= 0 . |
||||||||
70. |
y′′ + y = 6cos2x − sin 2x, |
y(π)= 1, |
y′(π)= 1. |
||||||||
71. |
y′′ − 4y′ + 13y = sin 3x, |
|
y(0) |
= 5 |
, |
y′(0) |
= 1 . |
||||
|
|
|
|
|
|
|
|
7 |
|
|
7 |
72. |
2y′′ + 5y′ = 30x2 − 4, |
y(0)= 4, |
y′(0)= |
5 . |
|||||||
73. |
y′′ − y′ = e2x , |
y(0)= −3, |
y′(0)= 1. |
2 |
|||||||
|
|||||||||||
74. |
y′′ + 2y′ + 5y = x2 − 3x, |
y(0)= 4, |
y′(0)= −2. |
||||||||
75. |
y′′ − 3y′ = −3e3x , |
y(0)= −1, |
y′(0)= 6. |
|
|||||||
76. |
y′′ + 4y′ + 4y = 15e3x , |
y(0)= 1, |
y′(0)= 3 . |
||||||||
77. |
y′′ + y′ − 2y = 2ex , |
y( |
0)= 4, |
y′(0)= 1. |
|
||||||
78. |
y′′ − 5y′ + 6y = −3e−x , |
|
y(0)= 4, |
y′(0)= 0 . |
|||||||
79. |
4y′′ + 4y′ + y = x2 + x − 1, |
y(0)= 5, |
y′( |
0)= 0,5 . |
|||||||
80. |
y′′ + 2y′ + 2y = 2e2x , |
|
y(π)= −3, |
y′(π)= 4 . |
|||||||
81. |
y′′ − 2y′ − 3y = 8e3x , |
|
y(0)= 1, |
y′( |
0)= −2. |
||||||
82. |
y′′ − 4y = 4x2 + x − 8, |
y(0)= 3, |
y′(0)= 1. |
||||||||
83. |
y′′ − y = 6ex , |
y(0)= 1, |
y′(0)= −3 . |
|
|||||||
84. |
y′′ + 5y′ + 6y = 10e2x , |
y(0)= 5, |
y′(0)= −2. |
||||||||
85. |
y′′ − 8y′ + 7y = 6xex , |
|
y(0)= 1, |
y′(0)= 7. |
|||||||
86. |
y′′ − 6y′ + 13y = x2 − x, |
y(0)= −2, |
y′(0)= 0 . |
||||||||
87. |
y′′ − y = 8e3x , |
y(0)= 3, |
y′(0)= −2. |
|
|||||||
88. |
y′′ − 2y′ = 6x2 − 3, |
y( |
0)= 3, |
y′(0)= −4 . |
|||||||
89. |
y′′ + 4y = x2 − x + 1, |
|
|
π |
= |
1, |
y′(π)= 4 . |
||||
y |
|
||||||||||
|
|
|
|
|
|
2 |
|
|
|
|
|