Файл: Глава 11 Проектирование машин постоянного тока.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 27.04.2019

Просмотров: 1211

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


При выбранной ширине зубца bz и установленном значении определяют размеры и площадь сечения паза (см. рис. 11.13):

высота шлица 0,5...0,8 мм;

ширина шлица принимается больше суммы максимального диаметра изолированного проводника и двусторонней толщины изоля­ции:

больший радиус

; (11.14)

меньший радиус

; (11.15)

расстояние

; (11.16)

площадь паза в штампе

; (11.17)

площадь сечения пазовой изоляции

; (11.18)

площадь пазового клина и изоляционной прокладки между сло­ями обмотки

; (11.19)

площадь поперечного сечения паза, заполненная обмоткой,

; (11.20)

площадь поперечного сечения обмотки, уложенной в один паз,

, (11.21)

где — диаметр одного изолированного провода; — число элементарных проводников в одном эффективном проводнике; — число витков в секции; — число секционных сторон в пазу; — коэффициент заполнения паза изолированными проводника­ми: = 0,68...0,72; — толщина пазовой изоляции по (11.18).

Если площадь поперечного сечения паза больше площади поперечного сечения обмотки , то необходимо выбрать проводни­ки большего диаметра и снизить плотность тока обмотки якоря.

Если , требуется увеличить плотность тока и выбрать проводники меньшего сечения, чтобы обеспечить коэффициент за­полнения паза не более 0,72.

Средняя длина полувитка секций обмотки якоря с овальными пазами и всыпными обмотками, м,

, (11.22)

где — длина лобовой части, м; — длина якоря, м. Средняя длина лобовой части:

при 2р = 2

; (11.23)

при 2р = 4

. (11.24)

Сопротивление обмотки якоря, Ом,

, (11.25)

где — удельное сопротивление меди при расчетной рабочей темпе­ратуре, qa — по (11.9).

Масса меди, кг,

. (11.26)

Прямоугольные пазы якоря. При прямоугольной форме паза (рис. 11.14) предварительно задаются высотой паза (см. рис. 11.13). Ширина зубца в минимальном сечении (у основания паза) определяется допустимой индукцией , значения которой можно принять по табл. 11.12.


Таблица 11.12. Значения допустимой индукции


Исполнение двигателей по степени защиты и способу и охлаждения

Магнитная индукция , Тл. при частоте перемагничивания, Гц

100

75

50

25 и ниже

IP22, IC01, IC17, IP44, IC37

1,9-2,1

2-2,2

2,1-2,3

2,2-2,4

IP44, IC0141

1,6-1,8

1,7-1,9

1,8-2

1,9-2,1

IP44, IC0041

1,5-1,7

1,6-1,8

1,7-1.9

1,8-2




Рис. 11.14. Размеры пазов прямоугольной формы



Рис. 11.15. К расчету и проектированию секций обмоток якоря


Якоря машин постоянного тока общего назначения с прямоуго­льными пазами при диаметрах свыше 200 мм имеют аксиальные вентиляционные каналы. При диаметрах до 300 мм достаточно вы­полнить один ряд каналов диаметром от 15 до 22 мм при числе ка­налов от 18 до 25.

При диаметрах от 300 мм до 500 мм выполняют два ряда кана­лов диаметром от 24 до 34 мм с числом каналов от 24 до 30.

При диаметрах якоря до 500 мм пакет магнитопровода насажи­вают непосредственно на вал. Внутренний диаметр сердечника в этом случае принимают ориентировочно равным или рас­считывают по формуле (11.13).

Размеры паза и и спинки якоря ; уточняют после проверки индукции в спинке якоря , которая не должна превышать предель­ных значений, приведенных в табл. 11.10.

При креплении обмоток в пазах якоря клиньями (рис. 11.14) вы­сота клина принимается равной приблизительно 4 мм, высота шлица = 1 мм.

После выбора размеров паза и зубца определяется максимальная ширина проводника с изоляцией:

. (11.27)

При скосах пазов на одно или половину зубцового деления рас­четную ширину паза в формуле (11.27) необходимо уменьшить на 0,1 мм.

Предельно допустимые значения высоты проводника с изоля­цией равны:

, (11.28)

где — число витков в секции. Для уменьшения эффекта вытеснения тока в проводниках обмотки якоря, вращающегося в магнитном поле, принимается высота элементарного проводника не более 4 мм при 100 Гц, 7 мм при 50 Гц, 10 мм при 25 Гц. В этом случае допускается разделить эффективный проводник по высоте на два эле­ментарных проводника, каждый из которых имеет высоту, не превы­шающую допустимый размер по высоте для данной частоты.

По размерам необходимо выбрать по табл. ПЗ.З стан­дартные размеры и сечение проводника.

Обмотки якорей с прямоугольными пазами выполняют из проводников прямоугольного сечения марки ПЭТВП при классе нагревостойкости изоляции В и ПЭТП-155 при классе нагревостойкости изоляции F.

Все типы двигателей серии 4П выполняют с изоляцией класса нагревостойкости F.

Если провода имеют круглое сечение, то при классах нагрево­стойкости изоляции Вир выбирают марку ПСД, при классе нагре­востойкости Н — ПСДК.

После проверки размещения всех проводников обмотки якоря в пазу с учетом клина, пазовой и витковой изоляций уточняют разме­ры паза, которые округляют до ближайшей большей десятой милли­метра.

По выбранному сечению проводника определяют плотность тока, А/м2,

(11.29)

и произведение AJa, А23.

Полученное значение произведения AJa необходимо сравнить с рекомендованными (см. рис. 11.11). Если , превышает допусти­мые значения, то необходимо увеличить площадь паза и, повторив расчет зубцовой зоны и размеров проводников, установить оконча­тельные размеры паза.


Размеры секций обмотки якоря (рис. 11.15) определяют по черте­жу пакета якоря и обмоточным данным.

Длины переднего и заднего вылетов секции равны:

;

,

где а — прямолинейный участок секции с учетом радиуса изгиба; в за­висимости от напряжения значение а равно:


U, В

250

500

750

1500

а, м

0,013

0,015

0,019

0,025


прямолинейный участок концов секции, который при перекру­ченных проводниках секции равен 0,015...0,02 м, при расплющенных концах секции 0,04 м, при выполнении секции без скрутки проводников 0,012...0,015 м; с — прямолинейные участки лобовых частей пе­редней части секции (с учетом радиуса изгиба):

.

Прямолинейные участки лобовых частей передней части секции и задней равны:

. (11.30)

Соответственно вылеты и равны:

; , (11.31)

где

; .

Шаг для предварительных расчетов

. (11.32)

Угол определяют согласно рис. 11.15:

, (11.33)

где — толщина катушки в лобовой части; — расстоя­ние между лобовыми частями двух соседних катушек:

м.

Длина полувитка обмотки якоря, м,

. (11.34)

Сопротивление и массу обмотки определяют соответственно по (11.25), (11.26).


11.5. РАСЧЕТ ВОЗДУШНОГО ЗАЗОРА ПОД ГЛАВНЫМИ ПОЛЮСАМИ. КОМПЕНСАЦИОННАЯ ОБМОТКА


Воздушный зазор под главными полюсами является одним из главных размеров машины, хотя выбирают его часто, исходя из тех­нологических и конструктивных соображений. От размера этого за­зора зависят основные характеристики машины, а также потенциа­льные условия коммутации на коллекторе, допустимый диапазон регулирования частоты вращения и т. д.

Поскольку в машинах постоянного тока, за редким исключени­ем, щетки устанавливаются строго по линии геометрической ней­трали, а магнитная цепь насыщена, то при расчете магнитной цепи машины рассматривают только поперечную составляющую реак­ции якоря и влияние ее на магнитное поле в воздушном зазоре.

Расчет размагничивающего действия поперечной реакции якоря производят по переходной характеристике (рис. 11.16), построенной по результатам расчета магнитной цепи (см. табл. 11.19). При нагрузке под действием поперечной реакции якоря магнитное поле в воздушном зазоре искажается: под одним краем полюса индукция уменьшается, под другим возрастает. Точки и , отстоящие от ординаты на расстоянии 0,5 (где — ши­рина полюсной дуги), определяют значения и под краями полюсов, а кривая daf— распределение индукции в воздушном зазоре на протяжении полюсной дуги.

Среднее значение индукции в воздушном зазоре в этом случае можно определить по формуле, известной из общего курса теории электрических машин [6]:


, (11.35)

где — индукция в воздушном зазоре в режиме холостого хода.

Для определения МДС размагничивания поперечной реакции якоря необходимо ось криволинейного четырехугольника сместить по оси на отрезок . В масштабе МДС этот от­резок определяет размагничивающее действие реакции якоря.

Как видно из рис. 11.16, поперечная реакция якоря нарастает от середины полюсной дуги к его краям. При значительной попереч­ной реакции якоря может произойти опрокидывание поля под од­ним краем полюса: точка d сместится по кривой индукции (рис. 11.16) в область отрицательных значений .

Так как поле реакции якоря замыкается по контуру — зубцы якоря, спинка якоря, воздушный зазор, полюсный наконечник, то воздушный зазор выбирают таким, чтобы индукция на протяже­нии всей полюсной дуги не изменяла своего направления. Обычно это условие выполняется на всех рабочих диапазонах изменения тока якоря и индукции в воздушном зазоре, если воздушный зазор находится в пределах, указанных на рис. 11.17.





Рис. 11.16. Переходная характеристика машины постоянного тока



Рис. 11.17. Зависимость длины воздуш­ного зазора от диаметра якоря


Рис. 11.18. Полюсный наконечник главного полюса




Рис. 11.19. Пазы компенсационной обмотки


В целях снижения реакции якоря под краями полюсов воздуш­ный зазор может выполняться эксцентричным или с приподнятыми краями полюсов (рис. 11.18). В этом случае воздушный зазор может быть рассчитан по формуле

, (11.36)

где — коэффициент приведения неравно­мерного воздушного зазора, имеющего размер под середи­ной полюса и под краем полюсного наконечника. Обычно .

В машинах серии 4П и в машинах других серий при диаметрах якоря свыше 300 мм, а также в машинах с широким диапазоном ре­гулирования частоты вращения и большой кратностью перегрузок для компенсации поперечной реакции якоря в зоне полюсной дуги применяют компенсационную обмотку.

Конструктивно компенсационную обмотку выполняют в виде однослойной катушечной, а в крупных машинах — в виде стержне­вой обмотки и укладывают в пазы наконечников главных полюсов (рис. 11.19) или в пазы статора в машинах серии 4П.

Схема выполнения компенсационной обмотки приведена на рис. 11.20, где буквами N и S обозначена полярность добавочных полюсов.


Рис. 11.20. Схема выполнения компенсационной обмотки



При расчете компенсационной обмотки обычно принимают ее МДС в зоне полюсной дуги в пределах

. (11.37)

Компенсационную обмотку соединяют последовательно с об­моткой якоря, что создает автоматическую компенсацию реакции якоря при любом токе нагрузки.

Во избежание вибраций магнитного происхождения зубцовый шаг по полюсному наконечнику (см. рис. 11.19) должен отлича­ться от зубцового шага по якорю. Это условие обычно выпол­няется, если число пазов компенсационной обмотки находится в пределах


. (11.38)

Число зубцов должно быть четным. Выбор числа зубцов и расчет зубцовой зоны компенсационной обмотки производят в сле­дующем порядке.

Определяют число проводников компенсационной обмотки на один полюс:

, (11.39)

где — число параллельных ветвей компенсационной обмотки; / — ток якоря, А.

Число параллельных ветвей принимают равным единице при токе якоря до 2000 А. Если ток в пазу компенсационной обмотки превышает 2000 А, то ее выполняют в две параллельные ветви: = 2.

Выбирая ZK в диапазоне от 6 до 12, определяют шаг , ширину зубца где — коэффициент рассеяния главного полюса; Тл — индукция в минимальном се­чении зубца компенсационной обмотки.

Ширина паза в свету равна:

. (11.40)

При выбранном числе пазов определяют число проводников обмотки в одном пазу:

. (11.41)

Число округляют до ближайшего целого числа.

Площадь поперечного сечения проводника компенсационной обмотки

, (11.42)

где — плотность тока в компенсационной обмотке.

В зависимости от класса нагревостойкости изоляции плотность тока принимают равной (4,7...5,2)·106 А/м2 для класса В, (5,3...5,8)·106 А/м2 для класса F и (6,0...6,6)·106 А/м2 для класса Н. Плотность тока в компенсационных обмотках машин серии 4П при­нимают в соответствии с рекомендациями по выбору плотности тока в статорных обмотках асинхронных машин серии 4А.

При числе проводников в пазу более двух компенсационную обмотку выполняют катушечной с укладкой в открытые пазы. В этом случае проводники размещают в зависимости от выбран­ных размеров элементарного проводника либо меньшей, либо бо­льшей стороной по ширине паза. Стороны катушечных групп мо­гут укладываться как в один, так и в два ряда по ширине паза (рис. 11.21, а—в). При числе проводников в пазу = 1 или 2 (рис. 11.21, г, д) обмотку выполняют стержневой. Стержневые об­мотки из неизолированной шинной меди изолируют и вставляют с торца в полузакрытые пазы, ширину шлица паза принимают равной 2—3 мм. В лобовых частях стержни соединяют дугами из неизолированной шинной меди.

Конструкция изоляции компенсационных обмоток в пазу и ло­бовых частях приведена в табл. 11.13—11.15.

После выбора стандартных размеров проводника, схемы разме­щения проводников в пазу и клас­са нагревостойкости изоляции обмотки окончательно рассчиты­вают размеры пазов, уточняют степень компенсации:

. (11.43)

Коэффициент , должен нахо­диться в пределах 0,85 — 1,15.

Высота клина принимается равной = 2,5 мм, высота шлица = 1,0 мм.

Средняя ширина катушки компенсационной обмотки, м,