Файл: Ответы на экзаменационные вопросы.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 14.11.2019

Просмотров: 515

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1.1)Предмет динамики. Основные понятия и определения: масса, мат.точка, сила.

2) Дифф.ур-я движения мат.точки в поле центральной силы. Формула Бине.

1) Массу Ньютон определяет как количество материи, а кельвин как количество энергии.

Мат.точкой называется материальное тело размерами которого при изучении данного движения можно пренебречь.

Мат.точка имеет массу.

Сила – векторная величена определяющая меру взаимодействия между двумя телами.

2)

Д
ифференциальное уравнение траектории точки в форме Бине.










































2.1) З-ны механики Галелея-Ньютона. Инерциальная система отсчета. Задачи динамики.

2) Движение мат.точки в поле тяготения Земли.

1)

I-й з-н (З-н Инерции): Мат.точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор пока действие других тел не изменит этого состояния.

II-й з-н (Основной з-н движения): Модуль ускорения мат.точки пропорционален модулю приложенной к ней силы, а направление ускорения совпадает с направлением действия на неё силы.

III-й з-н (З-н дейтвия и противодействия): Две мат.точки действуют друг на друга с силами равными по модулю и направленные вдоль прямой соеденяющей эти точки – в противоположные стороны.


Согласно з-ну всемирного тяготения сила тяготения пропорциональна силе тяжести, т.е. массе тяготеещей.


Галелей установил, если свободное падение тел происходит в пустоте и не далеко от поверхности Земли, то оно совершается с одним и тем же ускорением g-9,81 м/с^2 => из второго закона Ньютона.

P
=mg,
где P – вес тела


M – масса Земли; R – радиус Земли; h<<R



Задачи динамики:

Первая задача динамики состоит в том, что зная закон движения и массу мат.точки необходимо найти силы действующие на свободную точку или реакции связей, если точка не свободна; в последнем случае активно действующие силы должны быть заданы.

Вторая задача динамики: Зная действующие на мат.точку силы, её массу, начальное положение и скорость определить закон движения мат.точки.

2)Если на мат точку M действует центральная сила P , то момент количества движения этой точки Lo относительно центра силы O постоянен и точка движется в плоскости I, перпендекулярной Lo. В этом случае Lo=const





3.1) Дифференциальные ур-я движения свободной и несвободной точки в декартовых координатах и в проекциях на оси естественного трёхгранника.

2) Сохранение момента количества движения мат.точки в случае центральной силы. Секторная скорость. Закон площадей.


1) Для свободной материальной точки.



В проекциях на оси координат: На оси естественного трёхгранника:



2) Моментом количества движения материальной точки отоносительно центра называется вектор,модуль которого равен произведению модуля количества движения на кратчайшее расстояние от центра до линии действия вектора количества движения, перпендекулярного плоскости, в которой лежат линии и направленный так, чтобы глядя от его конца видеть движение, совершающееся против часовой стрелки.


ТЕОРЕМА: Производная по времени от момента количества даижения материальной точки относительно некоторого центра равна геометрической сумме моментов всех сил, действующих на точку.







































































4.1)Две основные задачи динамики для мат.точки. Решение первой задачи динамики. Пример.

2)Теорема об изменении кинетического момента механической системы по отнашению к неподвижному центру и в её движении по отнашению к центру масс.

  1. Первая задача динамики состоит в том, что, зная закон движения и массу материальной точки необходимо найти силы действующие на свободную точку или реакции связи, если точка несвободна. В последнем случае активно действующие силы должны быть заданы.

Вторая задача динамики: зная действующие на материальную точку силы, её массу, начальное положение и скорость определить закон движения материальной точки.

Решение первой задачи.

П

усть задан закон движения материальной точки в виде,

А так же её равнодействующая и масса m.

Из дифференциального уравнения движения материальной точки в

д


екартовой системе координат следует, что:

А

налогично решается первая задача для свободной точки, когда связи отсутствуют, а по известным уравнениям движения необходимо найти действующие на точку силы. В этом случае:









Пример.


Груз весом Р поднимается вертикально вверх по закону

Определить натяжение тросса.




Дано: Решение.



2
)ТЕОРЕМА: Производная по времени от кинетического момента механической системы относительно неподвижного центра равен главному моменту всех внешних сил, действующих на систему относительно того же центра.



























5.1)Решение I-й задачи динамики. Пример.

2)Теорема об изменении количества движения точки и система в дифф.и конечной формах.

1)Решение первой задачи.

П

усть задан закон движения материальной точки в виде,

А так же её равнодействующая и масса m.

Из дифференциального уравнения движения материальной точки в

д


екартовой системе координат следует, что:



А

налогично решается первая задача для свободной точки, когда связи отсутствуют, а по известным уравнениям движения необходимо найти действующие на точку силы. В этом случае:











Пример.


Груз весом Р поднимается вертикально вверх по закону

Определить натяжение тросса.




Дано: Решение.



2
)ТЕОРЕМА: Производная по времени от кинетического момента механической системы относительно неподвижного центра равен главному моменту всех внешних сил, действующих на систему относительно того же центра.



2)З-н сохранения количества движения:

Если геометрическая сумма всех внешних сил, приложенных к механической системе = 0, то её вектор количества движения постоянен. Воспользуемся дифф.формой теоремы об изменении количества движения механической системы.






.б) Если алгебраическая сумма проекций на какую либо ось всех действующих сил системы = 0, то проекция её вектора количества движения на эту ось есть величена постоянная.


6.1)Решение II-й задачи динамики. Постоянные интегрирования и их определения по начальным условиям. Пример.

2)Кинетический момент механической системы относительно центра и оси. Кинетический момент твёрдого тела вращающегося относительно оси.

1
)Для решения этой задачи целесообразно воспользоваться дифф.ур-ми мат.точки в виде:


П
оскольку действие силы известны, то
=> известны и правые части этих ур-й. Интегрирование их дважды по времени приводит их к 3-м ур-м содержащим 6 произвольным постонным:


З
наче ния этих постоянных могут быть просто найдены с помощью нач.усл., т.е. если известно:


П
одставив найденные значения в постоянные интегрирования в общее решение дифф-х ур-й получили закон движения точки:


Отсюда => , что мат.точка под действием одной и той же силы может совершать целый класс движений определённый начальными условиями.

Н

апример: движения свободной мат.точки под силами тяжести – семейств кривых 2-го порядка.


Начальные условия позволяют учесть влияние на движение мат.точки сил дейсвовавших на неё до того момента, который принят за начальный.

2)Закон сохранения кинетического момента механической системы:

1)Если сумма моментов относительно данного центра всех внешних сил = 0, то кинетический момент механической системы сохраняет модуль и направление в пространстве

2)Если сумма моментов всех действующих на систему внешних сил относительно некоторой оси = 0, то кинетический момент механической системы относительно этой оси есть величина постоянная.

Частные случаи:

С
истема вращается вокруг неподвижной оси в этом случае кинетический момент механической системы =


,и если сумма моментов относительно этой оси равна нулю, то






































7.1)Свободные колебания мат.точки. Частота и период колебаний. Амплитуда и начальная фаза.

2)Потенциальное силовое поле и силовая функция. Выражение проекций силы потенциального поля с помощью силовой функции.

1

)






























8.1)Затухающие колебания мат.точки. Случай апериодического движения.

2)Момент инерции твёрдого тела относительно оси любого направления. Центробежные моменты инерции.



1)





2)















9.1)Вынужденные колебания мат.точки. Резонанс.

2)Количество движения мат.точки и механической системы. Выражение количества движения механической системы через массу системы и скорость центра масс.

1)Движение мат.точки называется вынужденным если на ряду с востанавливающей силой на неё действует возмущающая сила.



С целью упрощения будем считать, что возмущающая сила изменяется по гармоническому закону.


Явление сильного возрастания амплитуды при совпадении частоты возмущающей силы с частотой собственных колебаний называется резонансом.


2) Количеством движения мат точки называется вектор, имеющий направление вектора скорости, и модуль, равный произведению массы точки m на модуль скорости её движения v.


Количеством движения механической системы называется вектор, равный геометрической сумме (главному вектору) количеств движения всех мат точек этой системы.































10.1)Дифф.ур-я поступательного движения судна при сопротивлении, пропорциональном скорости.

2)Момент количества движения мат.точки относительно центра и оси.

1
)При движении тел в жидкости, сила трения пропорциональна первой степени скорости.


2)Моментом количества движения мат.точки относительно центра называется вектор, модуль которого = произведению модуля количества движения на кратчайшее расстояние от центра до линии действия вектора количества движения, I-й плоскости в которой лежат упоминающиеся линии и направленный так, что бы глядя от его конца видеть движение, совершающееся против часовой стрелки.


Моментом количества движения мат.точки относительно оси называется скалярная величена = произведению проекции количества движения мат.точки на плоскость перпендикулярную данной оси и на кратчайшее расстояние от точки пересечения данной оси с этой плоскостью до прямой, на которой лежит прямая вектора количества движения.


11.1)Дифф.ур-я относительного движения мат.точки. Переносная и Кориолисова силы инерции.

2)З-н сохранения кинетического момента механической системы. Примеры.

1
)Введем 2 вектора

ч
исленно равные произведениям

и
направленные противоположно ускорениям

Эти векторы назовём переносной и кориолисовой силами инерции.

Д
ифф.ур-я относительного движения мат.точки.

2)а)Если сумма моментов относительно данного центра всех внешних сил = 0, то кинетический момент механической системы сохраняет модуль и направление в пространстве.

.б)Если сумма моментов всех действующих на систему сил относительно некоторой оси = 0, то кинетический момент механической системы относительно этой оси есть величина постоянная.

Частный случай:

С
истема вращается вокруг неподвижной оси. В этом случае:

И
если сумма моментов относительно этой оси = 0, то:


Пример:

П
латформа Жуковского


Изменяя положение рук можно изменить угловую скорость вращения системы.




12.1)принцип относительности классической механики. Случаи относительного покоя.

2)Работа силы на конечном перемещении точки в потенциальном поле. Потенциальная энергия. Примеры потенциальных силовых полей.

1)Никакие механические явления , происходящие в среде, не могут обнаружить её прямолинейного и равномерного поступательного движения.

В том случае, когда мат точка находится в состоянии относительного покоя, геометрическая сумма приложенных к точке сил и переносной силы инерции равна 0.

2)ТЕОРЕМА. Работа постоянной силы по модулю и направлению силы на результирующем перемещении = алгебраической сумме работ этой силы на составляющих перемещениях.

Работа сил, действующих на точки механической системы в потенциальном поле, равна разности значений силовой функции в конечном и начальном положениях системы и не зависит от формы траектории точек этой системы.


Потенциальная энергия системы в любом данном её положении = сумме работ сил потенциального поля, приложенных к её точкам на перемещении системы из данного положения в нулевое.

Примером потенциального силового поля является гравитационное поле Земли.


































13.1)Механическая система. Масса системы, Центр масс и его координаты.

2)Мощность. Работа и мощность сил, приложенных к твёрдому телу, вращающемуся вокруг неподвижной оси.

1)Механической системой или системой материальных точек называется такая их совокупность, при которой изменение положения одной из точек вызывает изменение положения всех остальных. Примером механической системы может служить любая машина или механизм, где движение от одних частей машины или механизма передаётся с помощью связей другим частям. Твёрдое тело будем рассматривать как механическую систему, расстояния между точками которой неизменны. Системы, отвечающие этому условию называются неизменными. Системой свободных точек называется система материальных точек, движение которой не ограничивается никакими связями, а определяется только действующими на них силами. Пример- солнечная система. Системой несвободных точек называется система материальных точек, движения которых не ограничены связями. Пример- система блоков (полиспаст). Масса системы это сумма масс всех точек, входящих в систему. Центром масс механической системы называется точка радиус-вектор которой отвечает условию , где - радиусы-векторы материальных точек . Спроектировав обе части этого равенства на оси OX, OY, OZ прямоугольной системы координат, получим выражение, определяющее координаты центра масс механической системы

, где - координаты точек.

2)Предположим, что к твёрдому телу, вращающемуся вокруг неподвижной оси Z, приложены внешние силы . Вычислим сначала элементарную работу отдельной силы , которая приложена в точке , описывающей окружность радиусом . Разложим эту силу на три составляющие, направленные по естественным осям траектории точки . Определим момент силы относительно оси z как сумму моментов её составляющих относительно этой оси. В общем момент силы относительно оси Z равен моменту силы , которая лежит в плоскости, перпендикулярной оси Z . При элементарном перемещении тела его угол поворота φ получает приращение , а дуговая координата точки - приращение . Вычислим работу силы на этом перемещении как сумму работ трёх её составляющих. Работа сил перпендикулярных вектору скорости точки , равна 0, поэтому элементарная работа силы . Элементарная работа всех сил, приложенных к твёрдому телу , где - Главный момент внешних сил относительно оси вращения z. Таким образом , т.е. элементарная работа сил, приложенных к твёрдому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота. Мощность вычисляется по следующей формуле: