Файл: лекции ядер безопас.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 15.11.2019

Просмотров: 1963

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Исследование ядерного синтеза

Власть ядерного синтеза - развивающаяся технология все еще при исследовании. Это полагается на плавление вместо того, чтобы расщепить (разделяющиеся) атомные ядра, используя совсем другие процессы по сравнению с текущими атомными электростанциями. У реакций ядерного синтеза есть потенциал, чтобы быть более безопасными и произвести менее радиоактивные отходы, чем расщепление. Эти реакции кажутся потенциально жизнеспособными, хотя технически довольно трудный и должны все же быть созданы в масштабе, который мог использоваться в функциональной электростанции. Власть сплава находилась под теоретическим и экспериментальным исследованием с 1950-х.

Строительство Международного Термоядерного Экспериментального Реакторного средства началось в 2007, но проект столкнулся со многими задержками и перерасходами бюджета. Средство, как теперь ожидают, не начнет операции до 2027 года – спустя 11 лет, после того, как первоначально ожидается. Следование на коммерческой электростанции ядерного синтеза, ДЕМОНСТРАЦИОННОМ ПРИМЕРЕ, было предложено. Есть также предложения для электростанции, основанной на различном подходе сплава, той из Инерционной электростанции сплава.

Сплав двинулся на большой скорости, производство электроэнергии, как первоначально полагали, было с готовностью достижимо, как власть расщепления была. Однако чрезвычайные требования для непрерывных реакций и плазменного сдерживания привели к проектированиям, расширяемым на несколько десятилетий. В 2010, спустя больше чем 60 лет после первых попыток, коммерческая выработка энергии, как все еще полагали, была маловероятна до 2050.

Более строгие стандарты безопасности

Мэтью Банн, прежний американский советник Управления по разработке политики в области науки и техники, и Хейнонен, прежний Заместитель генерального директора МАГАТЭ, сказали, что есть потребность в более строгих стандартах ядерной безопасности, и предложите шесть крупнейших областей для улучшения:

  • операторы должны запланировать события вне оснований дизайна;

  • более строгие стандарты для защиты ядерных установок против террористического саботажа;

  • более сильное международное экстренное реагирование;

  • международные обзоры безопасности;

  • закрепление международных стандартов на безопасности; и

  • международное сотрудничество, чтобы гарантировать регулирующую эффективность.

Прибрежные ядерные объекты должны также быть далее защищены от возрастающих уровней морей, штормовых волн, наводнения и возможного возможного «ядерного объекта islanding».

Тема2. Радиоактивные отходы

  1. Понятие радиоактивных отходов

  2. Источники появления отходов

  3. Классификация

  4. Обращение с радиоактивными отходами

  5. Основные стадии обращения с радиоактивными отходами

  6. Геологическое захоронение

  7. Трансмутация




Радиоактивные отходы (РАО) — отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности.

Согласно российскому «Закону об использовании атомной энергии» (от 21 ноября 1995 года № 170-ФЗ)[1] радиоактивные отходы — это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. По российскому законодательству, ввоз радиоактивных отходов в страну запрещен.

Часто путают и считают синонимами радиоактивные отходы и отработавшее ядерное топливо. Следует различать эти понятия. Радиоактивные отходы, это материалы, использование которых не предусматривается. Отработавшее ядерное топливо представляет собой тепловыделяющие элементы, содержащие остатки ядерного топлива и множество продуктов деления, в основном 137Cs и 90Sr, широко применяемые в промышленности, сельском хозяйстве, медицине и научной деятельности. Поэтому оно является ценным ресурсом, в результате переработки которого получают свежее ядерное топливо и изотопные источники.

Источники появления отходов

Радиоактивные отходы образуются в различных формах с весьма разными физическими и химическими характеристиками, такими, как концентрации и периоды полураспада составляющих их радионуклидов. Эти отходы могут образовываться:

- в газообразной форме, как, например, вентиляционные выбросы установок, где обрабатываются радиоактивные материалы;

- в жидкой форме, начиная от растворов сцинтилляционных счётчиков из исследовательских установок до жидких высокоактивных отходов, образующихся при переработке отработавшего топлива;

- в твёрдой форме (загрязнённые расходные материалы, стеклянная посуда из больниц, медицинских исследовательских установок и радиофармацевтических лабораторий, остеклованные отходы от переработки топлива или отработавшего топлива от АЭС, когда оно считается отходами).

Примеры источников появления радиоактивных отходов в человеческой деятельности:

- ПИР (природные источники радиации). Существуют вещества, обладающие природной радиоактивностью, известные как природные источники радиации (ПИР). Бо́льшая часть этих веществ содержит долгоживущие нуклиды, такие как калий-40, рубидий-87 (являются бета-излучателями), а также уран-238, торий-232 (испускают альфа-частицы) и их продукты распада.[2].

Работа с такими веществами регламентируются санитарными правилами, выпущенными Санэпиднадзором.[3]

- Уголь. Уголь содержит небольшое число радионуклидов, таких как уран или торий, однако содержание этих элементов в угле меньше их средней концентрации в земной коре.

Их концентрация возрастает в зольной пыли, поскольку они практически не горят.

Однако радиоактивность золы также очень мала, она примерно равна радиоактивности чёрного глинистого сланца и меньше, чем у фосфатных пород, но представляет известную опасность, так как некоторое количество зольной пыли остаётся в атмосфере и вдыхается человеком.При этом совокупный объём выбросов достаточно велик и составляет эквивалент 1000 тонн урана в России и 40000 тонн во всём мире.


- Нефть и газ. Побочные продукты нефтяной и газовой промышленности часто содержат радий и продукты его распада. Сульфатные отложения в нефтяных скважинах могут быть очень богаты радием; вода, нефть и газ в скважинах часто содержат радон. При распаде радон образует твёрдые радиоизотопы, образующие осадок внутри трубопроводов. На нефтеперерабатывающих заводах участок производства пропана обычно является одной из самых радиоактивных зон, так как радон и пропан обладают одинаковой температурой кипения.

- Обогащение полезных ископаемых. Отходы, полученные при обогащении полезных ископаемых, могут обладать природной радиоактивностью.

- Медицинские РАО. В радиоактивных медицинских отходах преобладают источники бета- и гамма-лучей. Эти отходы разделены на два основных класса. В диагностической ядерной медицине используются короткоживущие гамма-излучатели, такие как технеций-99m (99Tcm). Большая часть этих веществ распадается в течение короткого времени, после чего может быть утилизирована как обычный мусор. Примеры других изотопов, используемых в медицине (в круглых скобках указан период полураспада): Иттрий-90, используется при лечении лимфом(2,7 дня); Иод-131, диагностика щитовидной железы, лечение рака щитовидной железы (8 дней); Стронций-89, лечение рака костей, внутривенные инъекции (52 дня); Иридий-192, брахитерапия (74 дня); Кобальт-60, брахитерапия, внешняя лучевая терапия (5,3 года); Цезий-137, брахитерапия, внешняя лучевая терапия (30 лет).

- Промышленные РАО. Промышленные РАО могут содержать источники альфа-, бета-, нейтронного или гамма-излучения. Альфа-источинки могут применять в типографии (для снятия статического заряда); гамма-излучатели используются в радиографии; источники нейтронного излучения применяются в различных отраслях, например, при радиометрии нефтяных скважин. Пример применения бета-источников: радиоизотопные термоэлектрические генераторы для автономных маяков и иных установок в труднодоступной для человека местности (например, в горах).

Классификация

Условно радиоактивные отходы делятся на:

- низкоактивные (делятся на четыре класса: A, B, C и GTCC (самый опасный);

- среднеактивные (законодательство США не выделяет этот тип РАО в отдельный класс, термин в основном используется в странах Европы);

- высокоактивные.

Законодательство США выделяет также трансурановые РАО. К этому классу относятся отходы, загрязненные альфа-излучающими трансурановыми радионуклидами, с периодами полураспада более 20 лет и концентрацией большей 100 нКи/г, вне зависимости от их формы или происхождения, исключая высокоактивные РАО[5]. В связи с долгим периодом распада трансурановых отходов их захоронение проходит тщательнее, чем захоронение малоактивных и среднеактивных отходов. Также особое внимание этому классу отходов выделяется потому, что все трансурановые элементы являются искусственными и поведение в окружающей среде и в организме человека некоторых из них уникально.


Ниже приведена классификация жидких и твёрдых радиоактивных отходов в соответствии с «Основными санитарными правилами обеспечения радиационной безопасности» (ОСПОРБ 99/2010).






Удельная (объёмная) активность, Бк/кг (Бк/л)

Категория отходов

Бета-, гамма излучающие нуклиды

Альфаизлучающие нуклиды

(исключая трансурановые)

Трансурановые радионуклиды


Низкоактивные

Менее 106

Менее 105

Менее 104


Среднеактивные

От 106 до 1010

От 105 до 1010

От 104 до 108


Высокоактивные

Более 1010

Более 109

Более 108



Одним из критериев такой классификации является тепловыделение. У низкоактивных РАО тепловыделение чрезвычайно мало. У среднеактивных оно существенно, но активный отвод тепла не требуется. У высокоактивных РАО тепловыделение настолько велико, что они требуют активного охлаждения.

Обращение с радиоактивными отходами

Изначально считалось, что достаточной мерой является рассеяние радиоактивных изотопов в окружающей среде, по аналогии с отходами производства в других отраслях промышленности. На предприятии «Маяк» в первые годы работы все радиоактивные отходы сбрасывались в близлежащие водоёмы. Вследствие чего загрязнёнными оказались теченский каскад водоёмов и сама река Теча.

Позже выяснилось, что за счёт естественных природных и биологических процессов радиоактивные изотопы концентрируются в тех или иных подсистемах биосферы (в основном в животных, в их органах и тканях), что повышает риски облучения населения (за счёт перемещения больших концентраций радиоактивных элементов и возможного их попадания с пищей в организм человека). Поэтому отношение к радиоактивным отходам было изменено.

На данный момент МАГАТЭ сформулирован ряд принципов, нацеленных на такое обращение с радиоактивными отходами, которое обеспечит защиту здоровья человека и охрану окружающей среды сейчас и в будущем, не налагая чрезмерного бремени на будущие поколения[6]:

1) Защита здоровья человека. Обращение с радиоактивными отходами осуществляется таким образом, чтобы обеспечить приемлемый уровень защиты здоровья человека.

2) Охрана окружающей среды. Обращение с радиоактивными отходами осуществляется таким образом, чтобы обеспечить приемлемый уровень охраны окружающей среды.

3) Защита за пределами национальных границ. Обращение с радиоактивными отходами осуществляется таким образом, чтобы учитывались возможные последствия для здоровья человека и окружающей среды за пределами национальных границ.

4) Защита будущих поколений. Обращение с радиоактивными отходами осуществляется таким образом, чтобы предсказуемые последствия для здоровья будущих поколений не превышали соответствующие уровни последствий, которые приемлемы в наши дни.


5) Бремя для будущих поколений. Обращение с радиоактивными отходами осуществляется таким образом, чтобы не налагать чрезмерного бремени на будущие поколения.

6) Национальная правовая структура. Обращение с радиоактивными отходами осуществляется в рамках соответствующей национальной правовой структуры, предусматривающей чёткое распределение обязанностей и обеспечение независимых регулирующих функций.

7) Контроль за образованием радиоактивных отходов. Образование радиоактивных отходов удерживается на минимальном практически осуществимом уровне.

8) Взаимозависимости образования радиоактивных отходов и обращения с ними. Надлежащим образом учитываются взаимозависимости между всеми стадиями образования радиоактивных отходов и обращения с ними.

9) Безопасность установок. Безопасность установок для обращения с радиоактивными отходами надлежащим образом обеспечивается на протяжении всего срока их службы.

Основные стадии обращения с радиоактивными отходами

- При хранении радиоактивных отходов их следует содержать таким образом, чтобы:

- обеспечивались их изоляция, охрана и мониторинг окружающей среды;

- по возможности облегчались действия на последующих этапах (если они предусмотрены).

В некоторых случаях хранение может осуществляться главным образом по техническим соображениям, например, хранение радиоактивных отходов, содержащих в основном короткоживущие радионуклиды, в целях их распада и последующего сброса в санкционированных пределах, или хранение радиоактивных отходов высокого уровня активности до их захоронения в геологических формациях в целях уменьшения тепловыделения.

1. Предварительная обработка отходов является первоначальной стадией обращения с отходами. Она включает сбор, регулирование химического состава и дезактивацию и к ней может относиться период промежуточного хранения. Эта стадия очень важна, так как во многих случаях в ходе предварительной обработки представляется наилучшая возможность для разделения потоков отходов.

2. Обработка радиоактивных отходов включает операции, цель которых состоит в повышении безопасности или экономичности посредством изменения характеристик радиоактивных отходов. Основные концепции обработки: уменьшение объёма, удаление радионуклидов и изменение состава. Примеры:

- сжигание горючих отходов или уплотнение сухих твёрдых отходов;

- выпаривание, фильтрация или ионный обмен потоков жидких отходов;

- осаждение или флокуляция химических веществ.

3. Кондиционирование радиоактивных отходов состоит из таких операций, в процессе которых радиоактивным отходам придают форму, приемлемую для перемещения, перевозки, хранения и захоронения. Эти операции могут включать иммобилизацию радиоактивных отходов, помещение отходов в контейнеры и обеспечение дополнительной упаковки. Общепринятые методы иммобилизации включают отверждение жидких радиоактивных отходов низкого и среднего уровней активности путём их включения в цемент (цементирование) или битум (битумирование), а также остекловывание жидких радиоактивных отходов. Иммобилизованные отходы в свою очередь в зависимости от характера и их концентрации могут упаковываться в различные контейнеры, начиная от обычных 200-литровых стальных бочек до имеющих сложную конструкцию контейнеров с толстыми стенками. В многих случаях обработка и кондиционирование проводятся в тесной связи друг с другом.