ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.11.2019
Просмотров: 2005
Скачиваний: 3
4. Захоронение главным образом состоит в том, что радиоактивные отходы помещаются в установку для захоронения при соответствующем обеспечении безопасности без намерения их изъятия и без обеспечения долгосрочного наблюдения за хранилищем и технического обслуживания. Безопасность в основном достигается посредством концентрации и удержания, что предусматривает изоляцию надлежащим образом концентрированных радиоактивных отходов в установке для захоронения.
Технологии
Обращение со среднеактивными РАО
Обычно в ядерной индустрии среднеактивные РАО подвергаются ионному обмену или другим методам, целью которых является концентрация радиоактивности в малом объёме. После обработки уже гораздо менее радиоактивное тело полностью обезвреживают. Существует возможность использовать гидроксид железа в качестве флокулянта для удаления радиоактивных металлов из водных растворов. После абсорбции радиоизотопов гидроксидом железа полученный осадок помещают в металлический барабан, где он перемешивается с цементом, образуя твердую смесь. Для большей стабильности и долговечности бетон изготовляют из зольной пыли или печного шлака и портландцемента (в отличие от обычного бетона, который состоит из портландцемента, гравия и песка).
Обращение с высокоактивными РАО
Хранение
Для временного хранения высокоактивных РАО предназначены резервуары для хранения отработанного ядерного топлива и хранилища с сухотарными бочками, позволяющие распасться короткоживущим изотопам перед дальнейшей переработкой.
Витрификация
Долговременное хранение РАО требует консервации отходов в форме, которая не будет вступать в реакции и разрушаться на протяжении долгого времени. Одним из способов достижения подобного состояния является витрификация (или остеклование). В настоящее время в Селлафилде (Великобритания) высокоактивные РАО (очищенные продукты первой стадии пурекс-процесса) смешивают с сахаром и затем кальцинируют. Кальцинирование подразумевает прохождение отходов через нагретую вращающуюся трубу и ставит целью испарение воды и деазотирование продуктов деления, чтобы повысить стабильность получаемой стекловидной массы.
В полученное вещество, находящееся в индукционной печи, постоянно добавляют измельченное стекло. В результате получается новая субстанция, в которой при затвердении отходы связываются со стеклянной матрицей. Это вещество в расплавленном состоянии вливается в цилиндры из легированной стали. Охлаждаясь, жидкость затвердевает, превращаясь в стекло, которое является крайне устойчивым к воздействию воды. По данным международного технологического общества, потребуется около миллиона лет, чтобы 10 % такого стекла растворилось в воде.
После заполнения цилиндр заваривают, затем моют. После обследования на предмет внешнего загрязнения стальные цилиндры отправляют в подземные хранилища. Такое состояние отходов остаётся неизменным в течение многих тысяч лет.
Стекло внутри цилиндра имеет гладкую чёрную поверхность. В Великобритании вся работа проделывается с использованием камер для работы с высокоактивными веществами. Сахар добавляется для предотвращения образования летучего вещества RuO4, содержащего радиоактивный рутений. На Западе к отходам добавляют боросиликатное стекло, идентичное по составу пирексу; в странах бывшего СССР обычно применяют фосфатное стекло. Количество продуктов деления в стекле должно быть ограничено, так как некоторые элементы (палладий, металлы платиновой группы и теллур) стремятся образовать металлические фазы отдельно от стекла. Один из заводов по витрификации находится в Германии, там перерабатываются отходы деятельности небольшой демонстрационной перерабатывающей фабрики, прекратившей своё существование.
В 1997 году в 20 странах, обладающих большей частью мирового ядерного потенциала, запасы отработанного топлива в хранилищах внутри реакторов составляли 148 тыс. тонн, 59 % из которых были утилизированы. Во внешних хранилищах находилось 78 тыс. тонн отходов, из которых утилизировано 44 %. С учетом темпов утилизации (около 12 тыс. тонн ежегодно), до окончательного устранения отходов ещё достаточно далеко.
В 1989 и 1992 годах Франция ввела в строй коммерческие заводы по витрификации высокоактивных РАО, оставшихся от переработки оксидного топлива, несмотря на наличие аналогичных заводов во многих других странах, особенно в Великобритании и Бельгии. Пропускная способность западноевропейских заводов составляет порядка 1000 тонн в год, некоторые из них работают уже 18 лет.
Синрок
Более сложным методом нейтрализации высокоактивных РАО является использование материалов типа СИНРОК (synthetic rock — синтетическая порода). СИНРОК был разработан профессором Тедом Рингвудом в Австралийском национальном университете. Изначально СИНРОК разрабатывался для утилизации военных высокоактивных РАО США, но в будущем возможно его использование для гражданских нужд. СИНРОК состоит из таких минералов, как пирохлор и криптомелан. Первоначальный вариант СИНРОК (СИНРОК С) был разработан для жидких РАО (рафинатов пьюрекс-процесса) — отходов деятельности реакторов на легкой воде. Главными составляющими этого вещества являются голландит (BaAl2Ti6O16), цирконолит (CaZrTi2O7) и перовскит (CaTiO3). Цирконолит и перовскит связывают актиноиды, перовскит нейтрализует стронций и барий, голландит — цезий.
Геологическое захоронение
Поиски подходящих мест для глубокого окончательного захоронения отходов в настоящее время ведутся в нескольких странах. Ожидалось, что первые подобные хранилища вступят в эксплуатацию после 2010 года. Международная исследовательская лаборатория в швейцарском Гримзеле занимается проблемами захоронения РАО.
Швеция говорит о своих планах по прямому захоронению использованного ядерного топлива с использованием технологии KBS-3, после того, как шведский парламент счёл её достаточно безопасной. В Германии в настоящее время ведутся дискуссии о поисках места для постоянного хранения РАО, но активные протесты заявляют жители деревни Горлебен в Нижней Саксонии. Сейчас РАО находятся в Горлебене на временном хранении, решение о месте их окончательного захоронения пока не принято. Власти США выбрали местом захоронения Юкка-Маунтин (штат Невада), однако данный проект встретил сильное противодействие и стал темой жарких дебатов. В Финляндии началось строительство глубокого геологического захоронения Onkalo.
Существует проект создания международного хранилища высокоактивных РАО. В качестве возможных мест захоронения предлагаются местности в Австралии и России. Однако власти Австралии выступают против подобного предложения.
Существуют проекты захоронения РАО в океанах, среди которых — захоронение под абиссальной зоной морского дна, захоронение в зоне субдукции, в результате чего отходы будут медленно опускаться к земной мантии, а также захоронение под природным или искусственным островом. Данные проекты имеют очевидные достоинства и позволят решить на международном уровне неприятную проблему захоронения РАО, но, несмотря на это, в настоящее время они заморожены из-за запрещающих положений морского права. Другая причина состоит в том, что в Европе и Северной Америке всерьёз опасаются утечек из подобного хранилища, что приведет к экологической катастрофе. Реальная возможность подобной опасности не доказана, тем не менее, запреты были усилены после сброса РАО с кораблей. Однако, в будущем о создании океанских хранилищ РАО всерьёз способны задуматься страны, которые не смогут иначе разрешить данную проблему.
В 1990-х годах было разработано и запатентовано несколько вариантов конвейерного захоронения в недра радиоактивных отходов. Технология предполагалась следующая: пробуривается стартовая скважина большого диаметра глубиной до 1 км, внутрь опускается капсула, загруженная концентратом радиоактивных отходов весом до 10 т, капсула должна саморазогреваться и в форме «огненного шара» проплавлять земную породу. После заглубления первого «огненного шара» в ту же скважину должна опускаться вторая капсула, затем третья и т. д., создавая некий конвейер.
Более реальным выглядит проект под названием «Remix & Return» (Перемешивание и возврат), суть которого состоит в том, что высокоактивные РАО, смешанные с отходами из урановых рудников и обогатительных фабрик до первоначального уровня радиоактивности урановой руды, будут затем помещены в пустые урановые рудники. Достоинства данного проекта: исчезновение проблемы высокоактивных РАО, возврат вещества на место, предназначенное ему природой, обеспечение работой горняков, и обеспечение цикла удаления и обезвреживания для всех радиоактивных материалов.
Трансмутация
Существуют разработки реакторов, потребляющих в качестве топлива РАО, превращая их в менее вредные отходы, в частности, интегральный ядерный реактор на быстрых нейтронах, не производящий трансурановые отходы, а, по сути, потребляющий их. Проект был заморожен правительством США на стадии крупномасштабных испытаний. Другим предложением, более безопасным, но требующим дополнительных исследований, является переработка подкритическими реакторами трансурановых РАО.
Существуют также теоретические исследования, посвящённые использованию термоядерных реакторов в качестве «актиноидных печей». В таком комбинированном реакторе быстрые нейтроны термоядерной реакции делят тяжелые элементы (с выработкой энергии) или поглощаются долгоживущими изотопами с образованием короткоживущих. В результате исследований, недавно проведённых Массачусетским технологическим институтом, было обнаружено, что всего 2-3 термоядерных реактора, схожих по параметрам с международным экспериментальным термоядерным реактором ИТЭР, способны переработать количество актиноидов, вырабатываемое всеми ядерными реакторами на легкой воде. Кроме этого, каждый такой термоядерный реактор будет вырабатывать порядка 1 гигаватт энергии.
Повторное использование РАО
Ещё одним применением изотопам, содержащимся в РАО, является их повторное использование. Уже сейчас цезий-137, стронций-90, технеций-99 и некоторые другие изотопы используются для облучения пищевых продуктов и обеспечивают работу радиоизотопных термоэлектрических генераторов.
Удаление РАО в космос
Отправка РАО в космос является заманчивой идеей, поскольку РАО навсегдаудаляются из окружающей среды. Однако у подобных проектов есть значительные недостатки, один из самых важных — возможность аварии ракеты-носителя. Кроме того, значительное число запусков и большая их стоимость делает это предложение непрактичным. Дело также усложняется тем, что до сих пор не достигнуты международные соглашения по поводу данной проблемы.
Тема 3. Ядерный топливный цикл
-
Начало топливного цикла
-
Окончание цикла
-
К вопросу о распространении ядерного оружия
-
Переработка ядерного оружия
Начало топливного цикла
Отходы начального периода ядерного топливного цикла — обычно полученная в результате извлечения урана пустая порода, испускающая альфа-частицы. Она обычно содержит радий и продукты его распада.
Радиоактивность диоксида урана (UO2), получаемого при добыче урана, всего в тысячу раз превышает радиоактивность гранита, используемого в строительстве. Его получают из желтого кека (U3O8), затем перерабатывают в газообразный гексафторид урана (UF6). Газ проходит стадию обогащения, в результате содержание урана-235 (235U) повышается с 0,7 % до 3,5 % (низкообогащенный уран). Затем он превращается в твёрдый оксид урана (UO2), используемый в качестве топливных элементов ядерных реакторов на медленных нейтронах.
Главный побочный продукт обогащения — обеднённый уран, состоящий главным образом из урана-238, с содержанием урана-235 менее 0,3 %. Он находится на хранении в форме UF6 (отвальный гексафторид урана) и может быть также переведен в форму U3O8. В небольших количествах обедненный уран находит применение в областях, где ценится его крайне высокая плотность, например при изготовлении килей яхт и противотанковых снарядов. Между тем, в России и за рубежом накопилось несколько миллионов тонн отвального гексафторида урана,планов по дальнейшему использованию которого в обозримой перспективе нет. Отвальный гексафторид урана может использоваться (вместе с повторно используемым плутонием) для создания смешанного оксидного ядерного топлива, которое может иметь спрос при строительстве в стране в значительных количествах реакторов на быстрых нейтронах и для разбавления высокообогащенного урана, входящего ранее в состав ядерной взрывчатки. Это разбавление, называемое также обеднением, означает, что любая страна или группировка, получившая в своё распоряжение ядерное топливо, должна будет повторить очень дорогой и технологический сложный процесс обогащения, прежде чем сможет создать оружие.
Окончание цикла
Вещества, в которых подошёл к концу ядерный топливный цикл (в основном это отработавшие топливные стержни), содержащие продукты деления, испускающие бета- и гамма-лучи). Они также могут содержать актиноиды, испускающие альфа-частицы, к которым относятся уран-234 (234U), нептуний-237 (237Np), плутоний-238 (238Pu) и америций-241 (241Am), а иногда даже источники нейтронов, такие как калифорний-252 (252Cf). Эти изотопы образуются в ядерных реакторах.
Важно различать обработку урана с целью получения топлива и переработку использованного урана. Использованное ядерное топливо содержит высокорадиоактивные продукты деления. Многие из них являются поглотителями нейтронов, получив, таким образом, название «нейтронных ядов». В конечном итоге их количество возрастает до такой степени, что, улавливая нейтроны, они останавливают цепную реакцию даже при полном удалении стержней-поглотителей нейтронов.
Достигшее этого состояния топливо необходимо заменить свежим, несмотря на по-прежнему достаточное количество урана-235 и плутония. В настоящее время в США использованное топливо отправляется на хранение. В других странах (в частности, в России, Великобритании, Франции и Японии), это топливо перерабатывается с целью удаления продуктов деления, затем после дообогащения возможно его повторное использование. В России такое топливо называется регенерированным. Процесс переработки включает работу с высокорадиоактивными веществами, а удалённые из топлива продукты деления — это концентрированная форма высокоактивных РАО, так же, как используемые в переработке химикаты.
Для замыкания ядерного топливного цикла предполагается использовать реакторы на быстрых нейтронах, который позволяет перерабатывать топливо, являющееся отходами работы реакторов на тепловых нейтронах.
К вопросу о распространении ядерного оружия
При работе с ураном и плутонием часто рассматривается возможность их использования для создания ядерного оружия. Активные ядерные реакторы и запасы ядерного оружия тщательно охраняются. Однако, высокоактивные РАО из ядерных реакторов могут содержать плутоний. Он идентичен плутонию, используемому в реакторах, и состоит из 239Pu, идеально подходящего для создания ядерных взрывных устройств и 240Pu (нежелательный компонент и крайне радиоактивный). Эти два изотопа очень тяжело разделить. Более того, высокоактивные РАО из реакторов полны высокорадиоактивных продуктов деления. Впрочем, их большая часть — короткоживущие изотопы. Это означает, что возможно захоронение отходов, и через много лет продукты деления распадутся, снизив радиоактивность отходов и облегчив работу с плутонием. Более того, нежелательный изотоп 240Pu распадается быстрее, чем 239Pu, таким образом, качество сырья для создания ядерного взрывного устройства со временем растет (несмотря на уменьшение количества). Это вызывает споры о том, что с течением времени хранилища отходов могут превратиться в своеобразные «плутониевые рудники», из которых относительно легко можно будет добыть сырье для создания ядерных взрывных устройств. Против этих предположений говорит тот факт, что период полураспада 240Pu составляет 6560 лет, а период полураспада 239Pu — 24110 лет, таким образом, сравнительное обогащение одного изотопа относительно другого произойдет только через 9000 лет (это означает, что в течение этого времени доля 240Pu в веществе, состоящем из нескольких изотопов, самостоятельно уменьшится вдвое, — типичное превращение реакторного топливного плутония в оружейный плутоний). Следовательно, «рудники оружейного плутония» если и станут проблемой, то только в очень отдаленном будущем.