ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.11.2019
Просмотров: 2287
Скачиваний: 8
В 1999 году на основе аминокислотной последовательности, серологическим свойствам, энзимной и биологической активности была создана унифицированная для всех растений номенклатура PR-белков, состоящая из 14 семейств (PR-1 – PR-14). Некоторые PR-белки имеют протеазную, рибонуклеазную, 1,3--глюканазную, хитиназную активности или являются ингибиторами протеаз. Высшие растения не имеют хитина. Вероятно, что эти белки участвуют в защите растений от грибов, так как хитин и -1,3-глюканы являются главными компонентами клеточных стенок многих грибов и хитиназа гидролизует -1,3-связи хитина. Хитиназа может действовать также как лизоцим, гидролизуя пептидоглюканы клеточных стенок бактерий. Однако -1,3-глюканаза может способствовать транспорту вирусных частиц по листу. Это объясняется тем, что -1,3-глюканаза разрушает каллозу (-1,3-глюкан), которая откладывается в клеточной стенке и плазмодесмах и блокирует транспорт вируса.
В состав PR-белков входят также низкомолекулярные (5 кДа) белки - модификаторы клеточных мембран грибов и бактерий: тионины, дефенсины и липидпереносящие белки. Тионины токсичны в условиях in vitro для фитопатогенных грибов и бактерий. Их токсичность обусловлена разрушающим действием на мембраны патогенов. Дефенсины обладают сильными антигрибными свойствами, но не действуют на бактерии. Дефенсины из растений семейств Brassicaceae и Saxifragaceae подавляли рост растяжением гиф грибов, но способствовали их ветвлению. Дефенсины из растений семейств Asteraceae, Fabaceae и Hippocastanaceae замедляли растяжение гиф, но не влияли на их морфологию.
В зараженных сверхчувствительных растениях накапливаются низкомолекулярные антибиотические вещества, получивших название фитоалексинов. Они обладают антибактериальным, фунгитоксичным и антинематодным действием. Фитоалексины синтезируются в живых клетках, граничащих с локальными некрозами. Из погибающих клеток поступает сигнал о необходимости синтеза фитоалексинов, которые затем перемещаются в некротизирующиеся клетки, где находится паразит. Фитоалексины подавляют рост патогенов, дезактивируют их экзоферменты. Транспортируются они по апопласту. Синтез их можно вызвать и химическими веществами. Многие высокоспециализированные патогены преодолевают фитоалексиновый барьер, разлагая фитоалексины или прекращая их синтез.
Еще одна возможность поддержания устойчивости растений - регуляция растением-хозяином образования соединений, жизненно важных для паразита. Так, фитофтора не способна продуцировать -ситостерин, необходимый грибу для образования спор. Его источником для гриба служат клетки растения. У устойчивых к фитофторе растений в месте инфицирования клетки резко сокращают синтез этого вещества и паразит не может размножаться. Недостаток -ситостерина также приводит к повреждению мембран патогена, что делает его клетки чувствительнее к воздействию фитоалексинов. Вместе с тем предшественники -ситостерина используются на синтез фитоалексинов сесквитерпеноидной природы.
При заражении растений патогенами увеличивается активность литического компартмента клеток чувствительных и сверхчувствительных растений. К литическому компартменту клеток растений относят мелкие вакуоли - производные эндоплазматического ретикулума и аппарата Гольджи, функционирующие как первичные лизосомы животных, то есть содержащие гидролазы структуры, в которых нет субстратов для этих ферментов. Кроме этих вакуолей к литическому компартменту клеток растений относятся центральная вакуоль и другие вакуоли, эквивалентные вторичным лизосомам клеток животных, которые содержат гидролазы и их субстраты, а также плазмалемма и ее производные, в том числе парамуральные тела, и внеклеточные гидролазы, локализованные в клеточной стенке и в пространстве между стенкой и плазмалеммой.
13. ЛИТЕРАТУРА
Дьяков Ю. Т., Озерецковская О. Л., Джавахия В. Г., Багирова С. Ф. Общая и молекулярная фитопатология // М.: Общество фитопатологов. 2001. 302 с.
Курсанов А. Л. Транспорт ассимилятов в растении // М.: Наука. 1976. 646 с.
Лебедев С. И. Физиология растений // М.: Агропромиздат. 1988. 544 с.
Леопольд А. Рост и развитие растений // М.: Мир. 1968. 494 с.
Малиновский В. И. Механизмы устойчивости сверхчувствительных растений табака к вирусу табачной мозаики // Автореф. дис. ... док. биол. наук. Владивосток: 1998. 45 с.
Мэтьюз Р. Вирусы растений // М.: Мир. 1974. 600 с.
Нобел П. Физиология растительной клетки (физико-химический подход) // М.: Мир. 1973. 288 с.
Олфри В., Мирский А. Как клетки создают молекулы // Живая клетка. М.: Мир. 1966. С. 51-66.
Патрушев Л. И. Экспрессия генов // М.: Наука. 2000. 527 с.
Полевой В. В. Физиология растений // М.: Высшая школа. 1989. 464 с.
Реунов А. В. Вирусный патогенез и защитные механизмы растений // Владивосток: Дальнаука. 1999. 173 с.
Слейчер Р. Водный режим растений // М.: Мир. 1970. 265 с.
Тарчевский И. А. Сигнальные системы клеток растений // М.: Наука. 2002. 294 с.
Чиркова Т. В. Физиологические основы устойчивости растений // СПб: С.-Петерб. ун-та. 2002. 244 с.