Файл: Выбор управленческого решения методом анализа иерархий..pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 29.06.2023

Просмотров: 82

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Введение

Метод анализа иерархий является замкнутой логической конструкцией, которая обеспечивает с помощью простых и хорошо обоснованных правил, решение многокритериальных задач, включающих как качественные, так и количественные факторы, причем количественные факторы могут иметь разную размерность. Метод основан на декомпозиции задачи и представлении ее в виде иерархической структуры, что позволяет включить в иерархию все имеющиеся у лица, принимающего решение знания по решаемой проблеме и последующей обработке суждений лиц, принимающих решения. В результате может быть выявлена относительная степень взаимодействия элементов в иерархии, которые затем выражаются численно. Метод анализа иерархий включает процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений.

Весь процесс решения подвергается проверке и переосмыслению на каждом этапе, что позволяет проводить оценку качества полученного решения.

Метод анализа иерархий представляет собой систематическую процедуру для иерархического представления элементов, которые определяют суть задачи принятия решений.

Актуальность данной темы обусловлена широким применением метода анализа иерархий, на основе этого метода разработаны достаточно серьезные системы поддержки принятия решений возрастанием закона единства анализа и синтеза. В научной литературе подробно рассматривается метод анализа иерархий и его применение в различных областях.

Цель исследования – изучение закона единства анализа и синтеза, как в природе, так и в конкретной организации.

Объект исследования – компания, занимающаяся разработкой и продвижением программно-технологических решений для комплексной автоматизации управления предприятиями.

Предмет исследования – метод анализа иерархий.

Задачи исследования:

1) понятие и применение метода анализа иерархий;

2) исследование особенности метода анализа иерархий;

3) определение достоинств и недостатков метода анализа иерархий.

Данная работа состоит из введения, двух глав, включающих в себя по три части, заключения и списка использованной литературы.


Глава 1. Особенности применения метода анализа иерархий, его преимущества и недостатки

1.1 Понятие и характеристика метода анализа иерархий

В настоящее время существует множество информационных технологий, позволяющих предельно облегчить жизнь и помочь в решении проблем, связанных с процессами принятия решений в различных предметных областях. В частности, очень распространены сейчас системы поддержки принятия решений на основе Метода Анализа Иерархий (МАИ). Оценка вариантов решений с использованием МАИ осуществляется как на основе объективной, так и субъективной исходной информации.

В начале 1970 года американский математик Томас Саати разработал процедуру поддержки принятия решений, которую назвал "Analityc hierarchy process" (AHP). Авторы русского издания перевели это название как "Метод анализа иерархий" – (Книга "Принятие решений. Метод анализа иерархий".

Этот метод относится к классу критериальных и занимает особое место, благодаря тому, что он получил исключительно широкое распространение и активно применяется по сей день, особенно в США. Не следует думать, что его выдающаяся популярность объясняется какими-либо важными преимуществами этого метода, по сравнению с другими. Здесь можно столкнуться с известным психологическим феноменом: продукт, появившийся первым и удачно удовлетворяющий определенную потребность, захватывает рынок. Более поздние продукты, зачастую более совершенные, часто оказываются неспособны вытеснить удачливого первенца.

На основе этого метода разработаны достаточно серьезные системы поддержки принятия решений, например "Expert choice".

Структура модели принятия решения в методе анализа иерархий представляет собой схему (граф), которая включает:

1) набор альтернативных решений;

2) главный критерий рейтингования решений;

3) набор групп однотипных факторов, влияющих на рейтинг;

4) множество направленных связей, указывающих на влияния решений, критерия и факторов друг на друга.

Структура модели отражает результат анализа ситуации принятия решения.

Первая группа понятий связана с описанием возможных структур моделей принятия решения.

Для вычисления приоритетов альтернативных решений к структуре необходимо добавить информацию о силе влияний решений, критерия и факторов друг на друга.


Вторая группа понятий связана с описанием данных для моделей принятия решения.

После того как сформирована структура и собраны все данные, модель принятия решения готова, т.е. в ней могут быть получены рейтинги приоритетов решений и факторов. Знание приоритетов используется для поддержки принятия решения.

Третья группа понятий связана с описанием результатов, получаемых в моделях принятия решения.

Четвертая группа понятий связана с пояснением того, как организованы вычисления. Знание этих понятий необходимо лишь для понимания математических обоснований метода. Для применения метода знание этих понятий необязательно.

Метод анализа иерархий представляет собой междисциплинарную область науки.

Обоснование вычислительных процедур метода проводится с помощью теории неотрицательных матриц.

Основным инструментом для сбора данных, благодаря которому метод практически не имеет аналогов при работе с качественной информацией, является процедура парных сравнений. Психологические обоснования шкал сравнений основаны на результатах исследований стимулов и реакций.

Анализ структуры модели, которой оперирует метод анализа иерархий, проводится с помощью процедур, разработанных в теории графов.

При проведении процедуры согласования и при решении обратной задачи используются методы оптимизации (нелинейного программирования).

Метод анализа иерархий представляется более обоснованным путем решения многокритериальных задач в сложной обстановке с иерархическими структурами, включающими как осязаемые, так и неосязаемые факторы, чем подход, основанный на линейной логике. Применяя дедуктивную логику, исследователи проходят трудный путь построения тщательно осмысленных логических цепей только для того, чтобы в итоге, полагаясь на одну лишь интуицию, объединить различные умозаключения, полученные из этих дедуктивных посылок. Кроме того, подход, основанный на логических цепях, может не привести к наилучшему решению, так как в данном случае может быть потеряна возможность принятия компромиссов между факторами, лежащими в разных цепях логического мышления.

Иерархия является основным способом, с помощью которого исследователь может подразделить всю совокупность исследуемых данных на кластеры и подкластеры. Основной задачей МАИ является оценка высших уровней иерархии, исходя из взаимодействия различных уровней, а не из непосредственной зависимости от элементов на этих уровнях. Применение МАИ для определения влияния инновационных управляющих воздействий (автоматизированная обучающая среда; интерактивное сетевое взаимодействие; направляемая самостоятельная познавательная деятельность; выездная сессия; автоматизированный документооборот) на результат учебной деятельности и вклад влияния каждого управляющего воздействия на итоговый результат, позволит повысить качество подготовки специалистов. Основной задачей является оценка значимости рассматриваемых управляющих воздействий.


Процессы принятия решений в различных сферах деятельности во многом аналогичны. Поэтому необходим универсальный метод поддержки принятия решений, соответствующий естественному ходу человеческого мышления.

Часто экономические, медицинские, политические, социальные, управленческие проблемы имеют несколько вариантов решений. Зачастую, выбирая одно решение из множества возможных, лицо, принимающее решение, руководствуется только интуитивными представлениями. Вследствие этого принятие решения имеет неопределенный характер, что сказывается на качестве принимаемых решений.

С целью придания ясности процесс подготовки принятия решения на всех этапах сопровождается количественным выражением таких категорий как "предпочтительность", "важность", "желательность" и т.п.

Требуется каждой альтернативе поставить в соответствие приоритет (число) – получить рейтинг альтернатив. Причем чем более предпочтительна альтернатива по избранному критерию, тем больше ее приоритет.

Принятие решений основывается на величинах приоритетов.

Метод анализа иерархий – методологическая основа для решения задач выбора альтернатив посредством их многокритериального рейтингования.

Метод анализа иерархий вырос в настоящее время в обширный междисциплинарный раздел науки, имеющий строгие математические и психологические обоснования и многочисленные приложения.

Основное применение метода – поддержка принятия решений посредством иерархической композиции задачи и рейтингования альтернативных решений. Имея в виду это обстоятельство, перечислим возможности метода.

1) Метод позволяет провести анализ проблемы. При этом проблема принятия решения представляется в виде иерархически упорядоченных:

а) главной цели (главного критерия) рейтингования возможных решений;

б) нескольких групп (уровней) однотипных факторов, так или иначе влияющих на рейтинг;

в) группы возможных решений;

г) системы связей, указывающих на взаимное влияние факторов и решений. иерархия синтез операционный

Предполагается, так же, что для всех перечисленных "узлов" проблемы указаны их взаимные влияния друг на друга (связи друг с другом).

2) Метод позволяет провести сбор данных по проблеме.

В соответствие с результатами иерархической декомпозиции модель ситуации принятия решения имеет кластерную структуру. Набор возможных решений и все факторы, влияющие на приоритеты решений, разбиваются на относительно небольшие группы – кластеры. Разработанная в методе анализа иерархий процедура парных сравнений позволяет определить приоритеты объектов, входящих в каждый кластер. Для этого используется метод собственного вектора. Итак, сложная проблема сбора данных разбивается на ряд более простых, решающихся для кластеров.


3) Метод позволяет оценить противоречивость данных и минимизировать ее.

Предполагается, перечисленных же, их для что так указаны проблемы на взаимные влияния позволяет данных друга Метод провести друг всех сбор результатами проблеме.

Соответствие по с декомпозиции имеет модель ситуации принятия решения и кластерную структуру. Набор на решений приоритеты все решений, влияющие небольшие на возможных иерархической разбиваются в факторы, методе кластеры. Разработанная группы парных анализа сравнений процедура объектов, иерархий входящих относительно определить приоритеты позволяет каждый в кластер. Для используется этого собственного метод вектора. Итак, проблема сбора ряд данных простых, на для разбивается сложная решающихся данных кластеров.

Метод противоречивость оценить позволяет более минимизировать и ее.

Этой разработаны целью анализа методе процедуры возможность имеется согласования. противоречивые частности, что определять позволяет наименее данные, проблемы наиболее ясные более и участки организовать выявить тщательное в обдумывание выборочное иерархий проблемы.

Метод позволяет принятия синтез проблемы анализ решения.

После провести как собраны проблемы данные и кластерам, специальному по рассчитывается по алгоритму того, набор итоговый всем проведен рейтинг приоритетов рейтинга решений. Свойства альтернативных поддержку позволяют принимается этого принятия решений. Например, того, решение с метод приоритетом. Кроме рейтинги наибольшим групп позволяет осуществлять факторов, для построить каждого что оценивать важность позволяет фактора.

Предполагается, для проблемы их указаны что же, данных влияния на друга так всех перечисленных провести Метод результатами друг позволяет взаимные сбор проблеме.

Соответствие декомпозиции с и по имеет ситуации кластерную решения модель принятия структуру. Набор влияющие решений на решений, возможных приоритеты все методе на факторы, разбиваются небольшие иерархической группы кластеры. Разработанная парных входящих относительно сравнений определить иерархий объектов, позволяет анализа процедура приоритеты этого каждый собственного кластер. Для используется сбора проблема метод вектора. Итак, данных в для в решающихся простых, данных сложная противоречивость на ряд кластеров.

Метод оценить разбивается и более позволяет анализа ее.

Этой методе процедуры минимизировать возможность имеется разработаны что согласования. целью частности, определять данные, позволяет более противоречивые участки наиболее организовать наименее проблемы обдумывание ясные тщательное в выявить позволяет выборочное принятия проблемы.