Файл: В.М. Волков Математика и математика в экономике. Программа, контрольные работы №4, 5, 6 и методические указания для студентов 2 курса заочной формы обучения.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.06.2024
Просмотров: 107
Скачиваний: 0
25
Контрольная работа № 4
1-30. найти область определения функции двух переменных. Сделать схематический чертёж.
1. |
z = |
1 − x2 − y2 . |
16. |
z = |
xy. |
|
|
||
2. |
z = ln(x2 − y). |
17. |
z = |
1 |
|
. |
|||
9 − x2 |
− y2 |
||||||||
|
|
|
|
|
|
|
|||
3. |
z = x + arccosy. |
18. z = ln(y(x − 3)). |
|
||||||
4. |
z = |
y sin x. |
19. z = |
x2 + y2 − 2. |
|||||
5. |
z = ln(xy). |
20. |
z = ln(2x + y). |
|
|||||
6. |
z = ln y − ln(cosx). |
21. |
z = y2 − arccosx. |
||||||
7. |
z = |
4 − x2 − y2 . |
22. |
z = |
x cosy. |
|
|||
8. |
z = ln(x − y). |
23. |
z = |
y ln x. |
|
||||
9. |
z = 2x + arcsiny. |
24. |
|
|
1 |
|
|||
z = |
2 − x2 − y2 . |
10.z = x sin y.
11.z = x ln y.
12.z = ln(x(y −1)).
13.z = 16 − x2 − y2 .
14.z = ln(x + y).
15.z = arccosy − x.
25.z = x2 + y2 − 4.
26.z = ln(2y − x2 ).
27.z = y + arcsinx.
28.z = y cosx.
29.z = x2 − y .
30.z = ln x − ln(sin y).
31-60. Дана функция z=f(x;y). Показать, что она удовлетворяет данному уравнению
31. |
z = exy ; x2 ∂2z |
− y2 |
∂2z |
= 0. |
|
|
|||||
∂y2 |
|
|
|||||||||
|
∂x2 |
|
|
|
|
|
|
||||
32. |
z = e−cos(ax+y); |
a2 |
∂2z |
|
= |
∂2z . |
|
|
|||
∂y2 |
|
|
|||||||||
|
|
|
|
|
∂x2 |
|
|
||||
33. |
z = ln(x2 + y2 + 2y +1); |
|
|
∂2z + |
∂2z |
= 0. |
|||||
|
|
∂y2 |
|||||||||
|
|
|
|
|
|
|
|
|
∂x2 |
|
|
34. |
z = sin2 (y − ax); |
a2 |
∂2z |
|
= ∂2z . |
|
|||||
∂y2 |
|
||||||||||
|
|
|
|
∂x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
35. |
z = y |
; |
x2 ∂2z |
+ 2xy |
|
∂2z |
|
|
+ y2 |
∂2z |
|
= 0. |
|||||||||||||||||
∂x∂y |
∂y2 |
||||||||||||||||||||||||||||
|
|
x |
|
|
∂x2 |
|
|
|
|
|
|
|
|
|
|||||||||||||||
36. |
z = y |
y |
; |
x2 ∂2z |
− y |
2 ∂2z |
|
= 0. |
|
|
|
|
|||||||||||||||||
|
|
|
x |
|
|
|
|
∂x2 |
|
|
|
|
|
∂y2 |
|
|
|
|
|
|
|
||||||||
37. |
z = |
|
x ; |
|
x2 ∂ |
2 |
z − ∂ |
|
|
|
|
|
|
|
|
|
= 0. |
|
|
||||||||||
|
|
|
|
y2 |
∂z |
|
|
||||||||||||||||||||||
|
|
|
y |
|
|
∂x2 |
|
|
∂y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
∂y |
|
|
|
|
|
|||||||||||||
|
|
sin(x − y) |
|
|
|
∂ |
|
|
|
∂z |
|
|
|
|
∂2z |
|
|||||||||||||
38. |
z = |
|
|
|
|
|
; |
|
|
|
|
|
x2 |
|
|
|
|
− x2 |
|
|
|
= 0. |
|||||||
|
x |
|
|
|
|
|
|
|
∂x |
|
∂y2 |
||||||||||||||||||
|
|
|
|
|
|
|
|
∂x |
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
∂ |
2 |
|
|
|
|
∂ |
2 |
z |
|
|
|
|
|
|
|
|
|
|||
39. |
z = arctg x |
; |
|
|
z + |
|
|
= 0. |
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
∂x2 |
|
|
∂y2 |
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y
40.z = ex ;
41.z = xy ;
∂ |
2 |
∂z |
|
2 |
∂2z |
|
|
|
x |
|
|
− y |
|
|
= 0. |
|
|
|
∂y2 |
||||
∂x |
|
∂x |
|
|
|
∂2z = ∂2z . ∂x∂y ∂y∂x
42. |
z = ex (cosy + xsin y); |
|
|
|
|
∂2z |
|
|
|
= |
|
|
∂2z |
. |
|
|||||||||||||||||||||
|
|
|
∂x∂y |
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∂y∂x |
|||||||||||||||||
43. |
z = e2xy2; |
|
|
2 |
|
|
∂2z = 4 |
∂2z |
. |
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
y2 |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
∂x2 |
|
|
|
|
|
∂y2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
44. |
z = ex sin y; |
∂2z |
+ |
|
|
∂2z |
= 0. |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
∂x2 |
|
∂y2 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
2 |
|
∂ |
2 |
|
|
|
|
|
|
∂ |
2 |
z |
|
|
|
|
||||||||||
45. |
z = e(x+2)y |
; |
|
x + 2 |
|
|
|
|
|
z − |
|
|
|
|
= 0. |
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
y |
|
|
|
|
∂x2 |
|
|
|
|
|
∂y2 |
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
46. |
z = x3 + xy2 − 5xy3 + y5; |
|
|
|
∂2z |
= |
∂2z |
. |
||||||||||||||||||||||||||||
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∂x∂y |
∂y∂x |
||||||||||||
47. |
z = 4y2 |
x; |
|
|
|
2 |
|
∂ |
2 |
z |
|
+ ∂ |
2 |
z = 0. |
|
|
|
|||||||||||||||||||
8 x |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
∂x2 |
|
|
|
∂y2 |
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
48. |
z = exy |
2 |
|
|
|
|
y3 |
|
|
|
|
|
|
∂2z |
|
|
|
|
|
|
∂2z |
|
|
|
||||||||||||
|
; |
|
2(y2x +1) |
|
|
= |
∂x2 . |
|
|
|
||||||||||||||||||||||||||
|
|
|
∂y∂x |
|
|
|
||||||||||||||||||||||||||||||
49. |
z = ln(x + y2 ); |
2y |
|
∂2z |
= |
|
∂2z |
. |
|
|
|
|||||||||||||||||||||||||
|
∂x2 |
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∂y∂x |
|
|
|
|||||||||||||||||
50. |
z = x |
; |
|
∂2z |
= |
∂2z . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
y2 |
|
|
∂x∂y |
|
∂y∂x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27
51. |
z = esin(x+2y); |
4 |
∂2z |
= |
∂2z |
. |
|
|
|
|
|
||||||
∂x2 |
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
∂y2 |
|
|
|
||||||||
52. |
z = cos2 (y + 3x); |
|
∂2z |
|
= |
|
∂2z |
. |
|
|
|
||||||
|
∂x∂y |
|
|
|
|
|
|
||||||||||
|
|
|
|
|
∂y∂x |
|
|
|
|||||||||
53. |
z = 2x3 5y |
+1; |
|
∂2z |
= |
|
∂2z . |
|
|
||||||||
|
|
|
|
∂x∂y |
|
|
|
∂y∂x |
|
|
|
||||||
54. |
z = e3y cosx; |
9 ∂2z + |
|
∂2z |
|
= 0. |
|
|
|
|
|
||||||
|
∂y2 |
|
|
|
|
|
|
||||||||||
|
|
∂x2 |
|
|
|
|
|
|
|
|
|
|
|||||
55. |
z = x3y2 − 3xy3 − xy +1; |
|
|
∂2z |
|
= |
∂2z |
. |
|||||||||
|
|
∂x∂y |
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
∂y∂x |
56.z = 3axy − x3 − y3;
57.z = x3y + ln y − x;
y ∂2z = ∂2z . x ∂x2 ∂y2
∂2z = ∂2z . ∂x∂y ∂y∂x
58. |
z = ey cos5x; |
25 |
∂2z |
+ |
∂2z |
= 0. |
||||
|
|
|
∂x2 |
|||||||
|
|
|
|
∂y2 |
|
|||||
59. |
z = axy; x2 |
∂2z = |
∂2z |
. |
|
|||||
|
|
|
|
|||||||
|
y2 |
∂x2 |
∂y2 |
|
||||||
60. |
z = ln(xy +1); |
|
∂2z |
|
= |
∂2z |
. |
|||
|
∂x∂y |
|
∂y∂x |
|||||||
|
|
|
|
|
|
|
||||
|
61-90. Дана функция z=f(x,y) и две точки A(x0 , y0 ) и B(x1 , y1 ). Требу- |
ется: 1) вычислить значение z1 в точке B; 2) вычислить приближённое значение z1 функции в точке B, исходя из значения z0 функции в точ-
ке A и заменив приращение функции при переходе от точки A к точке B дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом; 4) составить уравнение касательной плоскости к поверхности z=f(x,y) в точке C(x0 , y0 , z0 ).
61. |
z = x2 |
+ 3xy + y2 , |
A(3,1), |
B(3,05;1,02). |
|
62. |
z = xy + y2 − 2x, A(2,1), |
B(2,03;0,96). |
|||
63. |
z = x2 |
+ y2 − x + y, |
A(− 2,2), |
B(− 2,02;2,05). |
|
64. |
z = 2x2 + 2xy − y2 , |
A(1,3), |
B(0,95;2,94). |
|
|
|
|
|
|
|
|
|
28 |
65. |
z = x2 + 3xy − y2 , |
A(1,3), |
B(0,96;2,95). |
||||||
66. |
z = xy + 2x − y, |
A(2,2), |
B(1,93;2,05). |
||||||
67. |
z = 3y2 − 9xy + y, |
A(1,3), |
B(1,07;2,94). |
||||||
68. |
z = xy + x − y, |
A(1,5;2,3), |
B(1,43;2,35). |
||||||
69. |
z = y2 − xy − x2 , |
A(− 4,5), |
B(− 3,92;5,06). |
||||||
70. |
z = x2 + y2 − x − y, |
A(1,−3), |
B(1,08;−2,94). |
||||||
71. |
z = x2 + 2x + y2 , |
A(1,2), B(1,03;1,97). |
|||||||
72. |
z = 2x2 − 9xy − y, |
A(1,1), |
|
B(0,98;1,03). |
|||||
73. |
z = 3y2 + xy − x − y, |
A(2,1), |
B(1,96;0,99). |
||||||
74. |
z = xy + y2 − x, |
A(3,2), |
B(3,03;1,92). |
||||||
75. |
z = 2x + 3y − y2 , |
A(1,2), |
B(1,08;2,01). |
||||||
76. |
z = y − xy + x2 , |
A(1,3), |
B(0,96;3,05). |
||||||
77. |
z = 2y2 − 3x2 − x + 2y, |
A(− 2,1), |
B(−1,93;0,92). |
||||||
78. |
z = 3y2 − 2xy + x2 , |
A(3,−1), |
B(3,04;−0,93). |
||||||
79. |
z = 7x + 8y − xy, |
A(5,3), B(4,98;3,03). |
|||||||
80. |
z = x2 − y2 + 5xy, |
A(− 3,−2), |
B(− 3,02;−1,98). |
||||||
81. |
z = y2 − 3xy + x2 , |
A(−1,1), |
|
B(− 0,96;1,04). |
|||||
82. |
z = x + y − 4y2 , |
A(2,−5), |
B(2,01;−4,93). |
||||||
83. |
z = 2x2 + y2 − x − 2y, |
A(− 2,3), |
B(−1,97;2,94). |
||||||
84. |
z = 7x2 + y2 − 3x, |
A(1,2), |
B(1,01;2,03). |
||||||
85. |
z = x + y − 8xy, |
A(3,2), |
B(3,04;1,98). |
||||||
86. |
z = 4xy + y2 − 2x2 , |
A(5,2), |
|
B(5,07;2,04). |
|||||
87. |
z = 8x2 + 7y2 − 5y, |
A(1,2), |
|
B(0,95;2,05). |
|||||
88. |
z = 3x + 4y − y2 , |
A(−1,−1), |
B(− 0,93;−1,04). |
||||||
89. |
z = x2 − y2 + xy, |
A(3,−1), B(3,01;−1,08). |
|||||||
90. |
z = 3y − 5xy − y2 , |
A(2,−1), B(1,92;−1,03). |
|||||||
|
91-120. Найти наибольшее и наименьшее значения функции z=f(x,y) |
||||||||
в замкнутой области. Сделать чертёж. |
|||||||||
91. |
z = x2 + y2 − xy − 4x |
|
в |
|
треугольнике, ограниченном прямыми |
||||
|
x = 0, y = 0, 2x + 3y −12 = 0. |
|
29
92. |
z = x2 + 3y2 + x − y |
|
в |
треугольнике, |
|
|
ограниченном |
прямыми |
||
|
x =1, y =1, x + y =1 . |
|
|
|
|
|
|
|||
93. |
z = x3 + y3 − 3xy |
в |
прямоугольнике, |
|
|
ограниченном |
прямыми |
|||
|
x = 0, x = 2, y = 0, y = 3 . |
|
|
|
|
|
||||
94. |
z = x2 − 2y2 + 4xy − 6x −1 |
в |
треугольнике, |
ограниченном |
прямыми |
|||||
95. |
x = 0, y = 0, x + y = 3. |
|
|
|
|
|
|
|||
z = xy − 2x − y |
в |
|
прямоугольнике, |
|
ограниченном |
прямыми |
||||
|
x = 0, x = 3, y = 0, y = 4 . |
|
|
|
|
|
||||
96. |
z = 0,5x2 − xy |
в области, ограниченной параболой y = x2 |
и прямой |
|||||||
|
y = 3 . |
|
|
|
|
|
|
|
3 |
|
97. |
|
в |
|
квадрате, |
ограниченном |
прямыми |
||||
z = 2x + y − xy |
|
|
||||||||
|
x = 0, x = 4, y = 0, y = 4. |
|
|
|
|
|
||||
98. |
z = x2 + y2 − xy + x + y |
в |
треугольнике, |
|
ограниченном |
прямыми |
||||
|
x = 0, y = 0, x + y = −3 . |
|
|
|
|
|
|
|||
99. |
z = x2 + 2xy − 4x + 8y |
в |
прямоугольнике, |
|
ограниченном |
прямыми |
||||
|
x = 0, x =1, y = 0, y = 2 . |
|
|
|
|
|
||||
100. |
z = x3 + 8y3 − 6xy +1 |
в |
прямоугольнике, |
ограниченном |
прямыми |
|||||
|
x = 0, x = 2, y = −1, y =1. |
|
|
|
|
|
||||
101. |
z = 2x2 + y2 − 3xy + y |
в |
треугольнике, |
|
ограниченном |
прямыми |
||||
|
x = 5, y = 0, |
y = 2x . |
|
|
|
|
|
|
|
|
102. |
z = 5x2 − y2 − 2x |
в |
треугольнике, |
|
ограниченном |
прямыми |
||||
|
x = 3, y = x, y = −x . |
|
|
|
|
|
|
|
||
103. |
z = x2 + y2 − x − 4y |
в |
треугольнике, |
|
|
ограниченном |
прямыми |
|||
|
y = 2x, y = 0, |
y =10 − 2x . |
|
|
|
|
|
|||
104. |
z = xy − y2 + x − 3y |
в |
треугольнике, |
|
|
ограниченном |
прямыми |
|||
|
x = 0, y = 3 − x, y = x − 5 . |
|
|
|
|
|
||||
105. |
z = x2 + y2 + 3xy − x + y |
в |
треугольнике, |
|
ограниченном |
прямыми |
||||
|
x = 0, y = 0, |
y = 0,5x + 2 . |
|
|
|
|
|
|||
106. |
z = x2 + y2 − xy − 5y + 3 |
в |
трапеции, |
|
|
ограниченной |
прямыми |
|||
|
x = 0, y = 0, y = 5, y = 8 − x . |
|
|
|
|