Файл: Е.Н. Грибанов Теория вероятностей и математическая статистика. Методические указания для студентов специальности 230500 - Социальный сервис и туризм.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.06.2024

Просмотров: 238

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

-20-

18 + 38 + 38 + 18 =1, поэтому для любого x > 3 имеем F (x)=1. Тогда функция распределения имеет вид

0, x 0;

18 , 0 < x 1;

F (x)= 48 , 1 < x 2;

78 , 2 < x 3;

1, x > 3.

Полученная функция имеет ступенчатый вид.

16. Плотность распределения Непрерывную случайную величину можно задать не только ин-

тегральной функцией распределения, но и дифференциальной функцией. Рассмотрим эту форму задания распределения случайной вели-

чины. Пусть задана непрерывная случайная величина Х с функцией

распределения

F (x).

Тогда,

если

существует

lim

F (x + x)F (x)

= F' (x), то функция

f (x)= F' (x) называется

 

x→∞

x

 

 

 

 

 

дифференциальной функцией распределения или плотностью распределения.

Используя методы интегрального исчисления, можно предложить формулу для нахождения интегральной функции распределения

по плотности F (x)= xf (x)dx .

−∞

Свойства плотности распределения.

1. Плотность распределения больше либо равна нулю для любого значения аргумента, то есть f (x)0 . Так как интегральная функция

распределения неубывающая, следовательно, её производная неотрицательная.

2. Вероятность попадания случайной величины в заданный интер-

вал [α; β) находится по формуле p{α x < β}= βf (x)dx .

α


-21-

3. Условие нормировки. Интеграл в бесконечных пределах от

плотности распределения равен единице, +f (x)dx =1.

−∞

Пример 20. Случайная величина Х подчинена закону распреде-

0, x < 0,

ления с плотностью f (x)= c sin x 0 x <π ,.

0 x π .

Определить коэффициент с. Найти вероятность попадания случайной величины на участок от 0 до π 2 и функцию распределения.

Решение. Площадь, ограниченная кривой распределения, равна

+∞

0

π

+∞

 

π

 

f (x)dx =

0dx+ csinxdx+ 0dx =−ccosx

 

=−c(11)=2c, по усло-

−∞

−∞

0

π

 

0

вию нормировки получаем 2c =1 c = 12 . Вероятность попадания в интервал найдём по формуле

p{0

x <π

2

}=π2

1

sin xdx = −

1

cos x

 

π 2

 

2

2

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

= −12 (0 1)= 12 .

Интегральную

 

функцию

распределения

найдём

 

по формуле

F (x)= xf (x)dx . Для x < 0 : имеем F (x)= x0dx = 0 .

 

 

 

−∞

 

 

 

 

 

 

 

 

 

−∞

 

 

 

 

 

 

Для 0 x <π :

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1 sin xdx =−

1 cos x

 

x

= −1

(cos x 1)=

1

(1cos x).

 

F(x)= 0dx +

 

 

−∞

0

2

 

 

 

2

 

0

2

 

 

 

 

 

2

 

 

 

 

 

0

π

1

 

 

 

 

+∞

 

1

 

 

π

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

Для x π : F(x)= 0dx+

sinxdx+

0dx

=−

cosx

 

=−

(11)=1.

 

 

 

 

 

−∞

0

2

 

 

 

π

2

 

0

 

 

2

Следовательно, интегральная функция распределения имеет вид

0,

x < 0;

 

 

 

F (x)=

1

 

(1cos x), 0 x <π ,

 

2

 

x π .

1,

 

 

 

 


-22-

17. Математическое ожидание Математическое ожидание определяет положение случайной

величины на числовой оси, показывая центр распределения (некоторое среднее значение, около которого сосредоточены все возможные значения случайной величины).

О. 1. Математическим ожиданием дискретной случайной ве-

личины называют сумму произведений всех возможных значений на

n

их вероятности, то есть М(x)= xk pk .

k =1

О. 2. Математическое ожидание непрерывной случайной ве-

личины Х , возможные значения которой принадлежат интервалу

[α; β], находится по формуле M (x)= βx f (x)dx .

α

Основные свойства математического ожидания.

1.Математическое ожидание постоянной равно самой постоянной, М(с)= с.

2.Постоянный множитель выносится за знак математического ожидания, М(cx)= cM (x).

3.Математическое ожидание суммы двух случайных величин

равно

сумме

их

математических

ожиданий,

M (x + y)= M (x)+ M (y).

 

 

4.Математическое ожидание произведения двух независимых

случайных величин равно произведению их математических ожиданий, M (xy)= M (x)M (y).

5.Математическое ожидание отклонения случайной величины от её математического ожидания равно нулю, M[x M (x)]= 0.

Пример 21. Найти математическое ожидание для случайной величины, заданной функцией распределения:

 

 

,

x 0;

 

 

 

0

 

 

F (x)=

1cos x, 0 < x π ;

 

 

 

 

 

 

2

 

 

 

x π

 

 

 

 

 

.

 

 

1

 

2

 

 

 

 

 

 

 

Решение. Найдём плотность распределения из соотношения


 

 

 

 

 

-23-

 

 

 

0 ,

x

0 ;

 

 

 

 

 

 

 

f (x )= F ' (x )= sin

x ,

0 < x π

2

;

 

 

 

> π

 

 

 

 

x

 

.

 

 

0 ,

2

 

 

 

 

 

 

 

 

 

Математическое ожидание непрерывной случайной величины находим по формуле

+∞

 

(x)dx =

π 2

 

u = x;

dv = sin xdx

=

М(x)= xf

x sin xdx =

−∞

 

 

 

 

0

 

 

 

du = dx;

v = −cos x

 

 

 

 

 

 

 

 

 

 

 

 

π

2

π

2

 

 

π

2

 

 

 

 

 

 

 

 

= −x cos x

0

 

+

cos xdx = sin x

 

0

=1.

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 22. Найти математическое ожидание для ряда распределения

xi

0

1

2

3

pi

0,1

0,3

0,4

0,5

Решение. Для дискретной случайной величины используем фор-

мулу M (x)= xi pi = 0 0,1+1 0,3 + 2 0,4 +3 0,2 =1,7.

О.3. Модой М0 дискретной случайной величины называется её значение, имеющее наибольшую вероятность.

О.4. Модой М0 непрерывной случайной величины называется та-

кое её значение, при котором плотность распределения имеет максимум.

Геометрически моду можно интерпретировать как абсциссу точки максимума кривой распределения. Бывают двухмодальные и многомодальные распределения. Встречаются распределения, которые имеют минимум, но не имеют максимума. Такие распределения называются антимодальными.

О.5. Медианой случайной величины Ме называют такое её значение, для которого справедливо равенство p{X < Me}= p{X > Me},

то есть равновероятно, что случайная величина окажется больше или меньше медианы.

С геометрической точки зрения, медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения, делится по-


-24-

полам. Так как вся площадь, ограниченная кривой распределения и осью абсцисс, равна единице, то функция распределения в точке, соответствующей медиане, равна 0,5:

F (Me )= p{X < Me}= 0,5.

18. Дисперсия и среднее квадратическое отклонение О.1. Дисперсией случайной величины Х называют математиче-

ское ожидание квадрата отклонения случайной величины от её математического ожидания D(x)= M[X M (x)]2 .

Дисперсия характеризует меру рассеяния случайной величины вокруг математического ожидания. Недостатком дисперсии является то, что она имеет размерность квадрата случайной величины и её неудобно использовать для характеристики разброса.

Этих недостатков лишено среднее квадратическое отклонение слу-

чайной величины, которое представляет собой квадратный корень из

дисперсии σ x = D(x).

Основные свойства дисперсии.

1.Дисперсия постоянной величины равна нулю, D(c)= 0. Доказательство. D(c)= M[c M(c)]2 = M[c c]2 = M(0)=0.

2.Постоянный множитель случайной величины можно выносить за знак дисперсии, предварительно возведя его в квадрат

D(cx)= c2 D(x).

Доказательство. По свойствам математического ожидания

D(cx)= M[cX M (cx)]2 = M[cX cM(x)]2 = M [c2 (X M (x))2 ]=

=c2 M[X M (x)]2 = c2 D(x).

3.Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин D(X +Y )= D(x)+ D(y).

Доказательство. Используя определение дисперсии и свойство

математического ожидания

М(X +Y )= M (x)+ M (y), дисперсию

случайной величины X +Y

можно выразить следующим образом:

D[X +Y ]= M[X +Y M(X +Y )]2 = M[X M(x)+Y M(y)]2 .

Представим выражение в квадратных скобках в виде двучлена и запишем квадрат его суммы. Используя свойства математического ожидания суммы и произведения двух независимых случайных величин, получаем