Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 888

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

56

2.2.4 The second-order moments and related physical properties

[Ref. p. 70

 

 

 

There are ten centered second-order moments, specified by k + + m + n = 2. Three pure spatial moments, x2 c , y2 c , xy c , three pure angular moments, u2 c , v2 c , uv c , and four mixed moments, x u c , y v c , x v c , and y u c . The centered second-order moments are associated to the beam extents in the near and far field and to the propagation of beam widths as will be discussed in the next section.

Only the three pure spatial moments can directly be measured since they can be obtained from the power density distribution in the observation plane by

xk y c = P I (x, y) (x − x )k

(y − y ) dx dy

(2.2.13)

 

 

 

1

 

 

 

with

 

 

I (x, y) x dx dy ,

 

(2.2.14)

x = P

 

 

1

 

 

 

 

 

y = P

I (x, y) y dx dy ,

 

(2.2.15)

 

1

 

 

 

 

 

and

 

 

 

 

 

 

P =

I (x, y) dx dy .

 

(2.2.16)

As the beam propagates through optical systems the Wigner distribution changes and consequently the moments change, too. A simple propagation law for the centered second-order moments through aberration-free optical systems can be derived from the propagation law of the Wigner distribution (2.2.9). Combining the ten moments in a symmetric 4 × 4-matrix, the variance matrix

 

x2

 

c

xy c

xu c

xv c

,

 

P =

xy c

y2

 

c

yu c

yv c

(2.2.17)

 

xu

c

yu c

u2

c

uv

c

 

 

 

xv

 

 

yv

 

uv

c

v2

 

c

 

 

 

 

c

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

delivers the propagation law

 

 

 

 

Pout = S · Pin · ST ,

 

 

 

 

 

 

 

 

(2.2.18)

where Pin and Pout are the variance matrices in the input and output planes of the optical system, respectively, and S is the system matrix.

2.2.4The second-order moments and related physical properties

In this section the relations between the centered second-order moments and some more physical properties are discussed.

2.2.4.1 Near field

The three spatial-centered second-order moments are related to the spatial extent of the power density in the reference plane as can be derived from (2.2.13). For example, the centered secondorder moments x2 c , defined by

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 70]

2.2 Beam characterization

57

 

 

 

 

 

x2 c

= P

I (x, y) (x − x )2 dx dy ,

(2.2.19)

 

1

 

 

 

can be considered as the intensity-weighted average of the squared distances in x-direction of all points in the plane from the beam-profile center. Obviously, this quantity increases with increasing beam extent in x-direction. A beam width in x-direction can be defined as

dx = 4 x2 c . (2.2.20)

The factor of 4 in this equation has been chosen by convention to adapt this beam-width definition to the former 1/e2-definition for the beam radius of Gaussian beams. For an aligned elliptical Gaussian beam profile,

 

 

 

x

2

 

y2

 

 

I (x, y) e2

 

 

· e2 wy2

 

 

wx2

,

(2.2.21)

where wx and wy are the 1/e2-beam radii in x- and y-direction, respectively, the relation

 

dx = 2 wx

 

 

 

 

 

holds. Similar, a beam width in y-direction can be defined as

 

 

 

 

 

 

 

dy = 4

y2 c

.

 

 

 

 

(2.2.22)

The beam width along an arbitrary azimuthal direction enclosing an angle of α with the x-axis can be derived from a rotation of the coordinate system delivering

dα = 4 x2 c cos2 α + 2 xy c sin α cos α + y2 c sin2 α . (2.2.23)

In general, the beam width considered as a function of the azimuthal direction α has unique maximum and minimum. The related directions are orthogonal to each other and define the principal axes of the beam. The signed angle between the x-axis and that principal axis which is closer

to the x-axis is given by

 

 

 

 

 

 

2

 

 

x2 c

− y2 c

 

 

 

 

ϕ =

1

atan

 

2

xy c

.

 

 

 

(2.2.24)

 

 

 

 

 

 

 

The beam width along that principal axis which is closer to the x-axis is determined by

 

dx = 22

 

 

 

 

 

 

 

1

1

 

x2 c + y2 c

+ ε x2 c − y2 c 2

+ 4 xy c2

 

(2.2.25)

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε = sgn

x2

 

c − y2

c .

 

 

 

 

(2.2.26)

Correspondingly, the beam width along the principal axis closer to the y-axis is given by

 

dy = 22

 

 

 

 

 

 

 

1

1

 

x2 c + y2 c

− ε x2 c − y2 c 2

+ 4 xy c2

.

(2.2.27)

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

Hence, the three spatial-centered second-order moments define the size and orientation of the so-called variance ellipse as the representation of a beam profile’s extent (Fig. 2.2.3).

Beam profiles having approximately equal beam widths in both principal planes, dx ≈ dy , may be considered as circular and a beam diameter may be defined by

d = 2 2 x2 + y2 . (2.2.28)

Sometimes this is an useful definition even for non-circular beam profiles, denoted then as “generalized beam diameter”.

Landolt-B¨ornstein

New Series VIII/1A1


58

2.2.4 The second-order moments and related physical properties

 

[Ref. p. 70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

y

 

 

 

y

 

x

d

 

x

 

dy

 

 

x

 

 

 

 

 

 

 

 

d ’

 

 

 

 

x

 

 

 

 

 

 

 

dx

 

d y

 

 

Fig. 2.2.3. Widths and variance ellipse of a power density profile. Left: widths dx and dy along the coordinate axes, middle: width dα along an arbitrary direction, right: widths dx and dy along the principal axes.

2.2.4.2 Far field

The three angular-centered second-order moments are related to the beam-profile extent in the far field, far away from the reference plane, or in the focal plane of a focusing lens. From the propagation law of the second-order moments, (2.2.18), the dependency of the spatial moments on the propagation distance z from the reference plane can be derived:

x2 c (z) = x2 c,0 + 2 z xu c,0 + z2 u2 c,0 ,2

 

uv

c,0 ,

(2.2.29)

 

xy

 

(z) =

 

xy

 

+ z

 

xv

 

+

 

yu

0

+ z

 

 

 

2

c

 

 

 

2

c,0

 

 

c,0

 

 

 

2

c,2

 

 

 

 

 

 

y

 

c (z) =

 

y

 

c,0 + 2 z yv c,0 + z

 

v

c,0 .

 

 

 

 

For large distances z the spatial moments depend only on the angular moments in the reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

plane:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

c (z)

 

 

 

z2

u2

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.2.30)

xy c

(z)

z2

uv

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2

c (z) ≈ z2

v2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The azimuthal angle ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F of that principal axis in the far field, which is closer to the x-axis is then

obtained by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ

 

=

lim

 

 

1

atan

 

 

 

2 xy c (z)

 

 

 

=

 

1

atan

2 uv c

 

 

,

 

 

 

 

(2.2.31)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

x2 c (z) − y2 c (z)

 

u2 c − v2 c

 

 

 

 

 

 

 

z→∞

2

 

 

 

 

 

2

 

 

 

 

 

 

and the (full) divergence angles along the principal axes of the far field might be defined as

 

 

 

 

 

 

 

 

 

d

(z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ

 

 

 

lim

 

 

 

x

 

 

= 2

u

2

c

 

v

2

c

+ η

 

u2

c − v

2

c

 

+ 4

 

uv

 

1

 

(2.2.32)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = z→∞

 

 

 

 

z

 

 

 

2

 

+

 

 

 

 

 

 

 

 

 

 

c

,

 

 

 

 

 

 

 

 

 

 

d

(z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

θ

 

 

 

lim

 

 

 

y

 

 

 

 

2

c

 

v

2

c

 

η

 

u2

c − v

2

c

+ 4

 

uv

 

 

(2.2.33)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

withy = z→∞

 

 

 

 

z

= 2

2

 

+

 

 

 

 

 

 

 

 

 

c

 

 

η = sgn

 

x2

 

c − y2

c .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.2.34)

The

generalized beam divergence angle might be defined as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ = 2

 

 

 

u2 c + v2 c

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.2.35)

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The azimuthal orientation of the far field may di er from the orientation of the near field.

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 70]

2.2 Beam characterization

59

 

 

 

2.2.4.3 Phase paraboloid and twist

The four mixed moments xu c , xv c , yu c , and yv c are closely related to the phase properties of the beam in the reference plane. Together with the three spatial moments they determine the radii of curvature and azimuthal orientation of the best-fitting phase paraboloid. Although the phase properties of partially coherent beams might be quite complicated, it is always possible to find a best-fitting phase function being quadratic (bilinear) in x and y:

Φ (x, y) = k a x2 + 2 b x y + c y2 .

(2.2.36)

The best-fitting parameters a, b, c are defined by minimizing the generalized divergence angle, (2.2.35), if a phase function according to (2.2.36) would be subtracted from the actual phase distribution in the reference plane (e.g. by introducing a cylindrical lens) resulting in

a =

 

y2

xu

x2

 

 

+

 

y2

 

 

 

 

− xy 2 ( xu − yv ) − xy

 

y2

( xv + yu )

,

(2.2.37)

 

 

 

 

( x

 

 

 

 

 

 

 

 

 

 

 

+ y ) x y

 

 

 

 

xy

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b =

 

x2

y2

 

( xv + yu ) − xy

 

x2

yv +

y2

xu

,

 

 

 

 

(2.2.38)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

x2

 

+

 

y2

 

)

 

 

x2

 

y2

 

 

 

xy

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c =

 

x2

yv

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

x2

 

( xv + yu ) .

(2.2.39)

 

x2

 

 

 

y2

 

 

 

 

+ xy

( xu − yv ) − xy

 

 

 

 

 

 

 

 

 

(

 

 

 

 

 

+

 

y2

)

 

x2

 

y2

 

 

xy

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A phase distribution as given in (2.2.36) can be considered as a rotated phase paraboloid, with

ϕP =

1

atan

2 b

 

(2.2.40)

2

a − c

as the signed angle between the x-axis and that principal axis of the phase paraboloid, which is closer to the x-axis, and with

R

=

2

(2.2.41)

 

 

x

 

(a + c) + µ (a − c)2 + 4 b2

 

and

 

 

 

 

R

=

2

(2.2.42)

 

 

 

 

y

 

(a + c) − µ (a − c)2 + 4 b2

 

with

 

 

 

 

µ = sgn (a − c)

(2.2.43)

as the radii of curvature along that principal axis of the phase paraboloid, which is closer to the x- and y-axis, respectively. The radii of curvature Rx and Rx independently may be positive or negative or infinite, the later indicating a plane phase front along that azimuthal direction. The azimuthal orientation of the phase paraboloid’s principal axes may di er from the orientation of the near field and/or far field.

If the radii of phase curvature along both principal axes are approximately equal, Rx ≈ Ry , a generalized phase curvature of the best-fitting rotational symmetric phase paraboloid is defined by

 

x2

c + y2

c

 

R =

xu c +

yv c

.

(2.2.44)

 

 

 

 

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1