Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 889

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

60

2.2.4 The second-order moments and related physical properties

[Ref. p. 70

 

 

 

 

Another phase-related parameter is the so-called twist, defined as

 

 

tw = xv − yu .

(2.2.45)

The twist parameter is proportional to the orbital angular momentum transferred by the beam [93Sim].

2.2.4.4 Invariants

From the ten centered second-order moments two basic quantities can be derived, that are invariant under propagation through aberration-free first-order optics [03Nem].

The e ective beam propagation ratio is defined as

Me2 =

1

 

 

 

 

(det (P)) 4

1

(2.2.46)

λ

and can be considered as a measure of the focusability of a beam. The lower limit holds only for coherent Gaussian beams.

The intrinsic astigmatism a, given by

a =

2

 

x2

u2

 

2

+ y2

 

v2

 

 

yv

2

 

 

λ2

c

− xu c

c

 

c

 

 

 

 

c

 

 

 

 

 

 

2 c

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

0 ,

 

 

 

+2

xy c uv c − xv c yu c

Me

 

(2.2.47)

is related to the visible and hidden astigmatism of the beam (see below).

2.2.4.5 Propagation of beam widths and beam propagation ratios

Under free-space propagation any directional beam width dα, as well as the generalized beam diameter d, obeys an hyperbolic propagation law:

α

0

 

zR

 

2

 

0

α

0

 

 

 

 

z z0

 

 

 

 

 

 

 

d (z) = d

1 +

 

 

 

=

d2

+ θ2 (z

z )2 ,

(2.2.48)

where z0is the z-position of the smallest width, the waist position, d0is the waist width, θα

the divergence angle, and zRthe Rayleigh length, i.e. the distance from the waist position, where

the width has grown by factor of

 

 

2. For the width along the x-direction, α = 0 , see Fig. 2.2.4,

the parameters can be obtained by

z

 

=

 

xu c

,

 

 

 

 

 

 

 

(2.2.49)

 

0

 

u2 c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 c

 

xu

2

 

 

 

 

d0 = 4

 

 

c

,

(2.2.50)

u2

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

xu

2

 

 

 

 

 

 

zR =

 

c

 

c

.

(2.2.51)

u2

 

u2

2

 

 

 

 

 

 

c

 

c

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 70]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Beam characterization

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2.4. Free-space propagation of beam widths

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the beam waist position z0, the beam waist

 

 

 

 

 

 

 

 

 

 

 

 

z0

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

width d0, the Rayleigh length zR, and the full di-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vergence angle θ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For other azimuthal directions α the same equations apply with the following substitutions:

 

x2

c

x2

 

c cos2 α + 2 xy c cos α sin α +

y2

c sin2

α ,

 

 

 

xu

 

 

 

xu

 

cos

2

α + 2 ( xv

c

+

 

yu

) cos α

 

 

 

 

 

 

c

sin2 α ,

 

c c

 

 

 

 

 

 

c

 

 

 

 

sin α +

yv

(2.2.52)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u2

c

u2

 

c cos2

α + 2 uv c cos α sin α +

v2

c sin2

α .

 

 

 

For the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

generalized diameter d the propagation parameters are obtained by

 

z

 

=

xu c + yv c

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.2.53)

 

0

 

u2 c + v2 c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d0 = 2 2

 

( x2 c

+ y2 c)

 

( u2 c

 

+ v2 c

)2

 

 

,

 

 

 

 

(2.2.54)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xu

 

+

yv

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zR =

 

u2

c + v2

c

u2

c +

v2

c .

 

 

 

 

 

 

 

 

 

(2.2.55)

 

 

 

 

 

 

x2

 

 

+ y2

 

 

 

 

xu

 

 

+

 

yv

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

c

c

 

c

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that beam widths along the principal axes, dx and dy , do not obey the hyperbolic propagation law in the case of a general astigmatic beam with rotating variance ellipse (see next section).

The product of the (directional) beam waist diameter d, dα and the corresponding far-field divergence angle θ, θα is called the beam parameter product. Due to di raction the beam parameter

product has a lower limit given by

 

 

 

 

d0 · θ =

d02

4

λ

 

 

θα =

d02

4

λ

(2.2.56)

 

 

 

, d0·

 

 

 

 

.

zR

π

zR

π

Normalization to this lower limit delivers the so-called beam parameter ratios

 

M 2 =

π

 

d0 · θ

,

Mα2 =

π

 

d0· θα

.

 

 

 

(2.2.57)

 

 

λ

 

 

 

 

 

λ

4

 

 

 

4

 

 

 

 

 

 

 

The beam parameter ratios M 2 and Mα2 are invariant in stigmatic aberration-free first-order optical systems (combinations of perfect spherical lenses). In contrast to the e ective beam parameter ratio Me2 , they may change under propagation through cylindrical lenses.

2.2.5 Beam classification

Lasers beams can be classified according to their propagation behavior. The classification is based on the discrimination between circular and non-circular power density profiles and the azimuthal

Landolt-B¨ornstein

New Series VIII/1A1


62

2.2.5 Beam classification

[Ref. p. 70

 

 

 

orientation of the non-circular profiles. A beam profile is considered circular if the beam widths along both principal axes are approximately equal, or, in practice, if

min dx, dy

> 0.87 . (2.2.58) max dx, dy

In this sense a homogeneous profile with square footprint is regarded circular, see Fig. 2.2.5.

Fig. 2.2.5. Within the concept of second-order-moment beam characterization a square top-hat profile is considered circular: Its width is independent of the azimuthal direction.

2.2.5.1 Stigmatic beams

A laser beam is considered stigmatic if all its profiles under free-space propagation are circular and if all non-circular profiles behind an arbitrary cylindrical lens, inserted somewhere in the beam, have the same azimuthal orientation as the lens. The system matrix Pst of a perfectly stigmatic beam has only three independent parameters:

 

 

 

2

 

 

0

 

 

xu

 

0

 

.

Pst =

x0 c

 

x2

c

 

0

c

xu c

 

 

 

xu

c

0

 

 

u2

c

0

 

 

 

0

 

xu

c

 

0

 

u2

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Physical parameters of a stigmatic beam are the beam diameter in the reference plane

d = 4 x2 c

and the full divergence angle

θ = 4 u2 .

(2.2.59)

(2.2.60)

(2.2.61)

Since the properties of a stigmatic beam are independent of the azimuthal direction, it has a unique waist position

z

0

=

xu c

(2.2.62)

u2 c

 

 

 

with a waist diameter of

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 70]

 

 

 

 

2.2 Beam characterization

63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 c

 

xu

2

 

 

 

d0 = 4

 

 

c

.

(2.2.63)

u2

 

 

 

 

 

c

 

The Rayleigh length zR is the distance from the waist position where the diameter has grown by

a factor of

 

 

 

 

 

 

2, given by

 

zR =

 

 

 

 

 

 

 

 

(2.2.64)

 

u2

c

u2

2c .

 

 

x2

 

 

xu 2

 

 

 

 

 

c

 

c

 

Finally, the phase paraboloid is of rotational symmetry with the radius of curvature being

x2

R = c . (2.2.65)

xu c

2.2.5.2 Simple astigmatic beams

A laser beam is classified as simple astigmatic if at least some of the power density profiles the beam takes on under free-space propagation are non-circular, but all non-circular profiles have the same azimuthal orientation. In practice, the orientations of two non-circular beam profiles are regarded as equal, if the azimuthal angles di er by less than 10 degrees. A simple astigmatic beam whose principal axes are parallel to the x- and y-axis is called aligned simple astigmatic. The variance matrix Pasa of a perfect aligned simple astigmatic beam has six independent parameters:

 

 

 

2

 

 

0

 

 

 

xu

Pasa =

x0 c

 

y2

 

c

 

0

c

 

 

 

xu

c

0

 

u2

c

 

0

 

yv

 

c

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yv

c .

(2.2.66)

0

 

 

 

 

v2

c

All the physical parameters given for stigmatic beams can be assigned separately for each principal axis of a simple astigmatic beam. The diameters in x- and y-direction are

 

 

 

 

 

 

 

 

 

 

 

dx = 4

 

x2 c ,

dy = 4 y2 c

(2.2.67)

and the according full divergence angle

 

θx = 4

 

 

,

θy = 4

 

 

.

(2.2.68)

u2

v2

Aligned simple astigmatic beams have in general two di erent waist positions for each principal axis:

z

 

=

 

xu c

,

z

 

 

=

 

yv c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.2.69)

 

 

 

 

 

 

 

 

 

v2 c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,x

 

u2 c

 

 

0,y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the associated waist diameters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d0,x = 4

 

x2 c

u2

c

,

d0,y = 4

 

y2 c

 

v2

c .

(2.2.70)

 

 

 

 

 

 

 

 

 

 

 

 

 

xu

2

 

 

 

 

 

 

 

 

 

 

 

 

yv

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

Similarly, two Rayleigh lengths are defined by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

xu

2

 

 

 

 

 

 

y2

 

 

 

yv

2

 

 

 

 

 

zR,x =

 

c

 

c

 

,

zR,y =

 

c

 

c

 

,

 

(2.2.71)

u2

 

u2

2

v2

c

v2

2

 

 

 

 

 

 

 

c

 

 

 

c

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1