Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 897

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

78

3.1.3 Solutions of the wave equation in free space

[Ref. p. 131

 

 

 

3.1.3 Solutions of the wave equation in free space

Following (3.1.2), each of the wave solutions given in this section must be multiplied with the factor ei ω t to obtain the propagating wave of (3.1.1).

3.1.3.1 Wave equation

The solutions of the wave equation (3.1.4) are vector fields.

3.1.3.1.1 Monochromatic plane wave

E = E0 exp {−i k0 nˆ er + i ϕ} ,

nˆ

H = c0µ0 (e × E0) exp {−i k0 nˆ er + i ϕ}

with

r : position vector,

e : unit vector normal to the wave fronts, k0 = 2π0 : wave number,

nˆ : complex refractive index, ϕ : phase.

For the phase velocity and the wave group velocity see Sect. 3.1.5.3.

3.1.3.1.2 Cylindrical vector wave

E = E0 ez H0(2)(k0ρ) ,

(k0ρ) (ρ > λ)

H = i c0µ0 ez ×

ρ

H1

 

E0

ρ

(2)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

for time-harmonic electric source current density on the z-axis of a cylindrical coordinate system with the coordinates (ρ, ϕ, z) : (radial distance, azimuthal angle, z-axis) [94Fel, Chap. 5].

Hm(2) : mth order Hankel function of the second kind [70Abr];

the change of convention in Sect. 3.1.1 includes: Hm(2) Hm(1) [94Fel, p. 487]; ρ : radial position vector,

ez : unit vector along the z-axis.

3.1.3.1.3 Spherical vector wave

 

 

 

 

 

E = E

0 ·

(n

×

p)

×

n

·

 

exp(i k0 nˆ r)

,

 

 

 

(3.1.21)

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H =

E0

 

·

(n

×

p)

·

exp(i k0 nˆ r)

 

(r

 

λ

)

(3.1.22)

 

 

 

c0µ0

 

 

 

 

 

r

 

0

 

 

Landolt-B¨ornstein

New Series VIII/1A1



Ref. p. 131]

3.1 Linear optics

79

 

 

 

is the far field (1/r2 and higher inverse power terms 1/r-term) of an oscillating electric dipole ([99Bor, 94Leh, 75Jac]) with

E0 : amplitude [V],

p : unit vector of the dipole moment,

n : unit vector pointing from dipole to spatial position, r : radial distance.

3.1.3.2 Helmholtz equation

The approximative transition from the vectorial wave equation (3.1.4) to the Helmholtz equation (3.1.5) ([99Bor]) results in scalar solutions. E is called: “field” [72Mar], “complex displacement” or “scalar wave function” [99Bor], “disturbance” [95Bas, Vol. I].

3.1.3.2.1 Plane wave

 

E = E0 exp {−i k0 nˆ er + i ϕ .}

(3.1.23)

For the parameters see (3.1.18).

 

3.1.3.2.2 Cylindrical wave

 

E = E0 H0(2)(k0 nˆ ρ) (ρ > λ0)

(3.1.24)

is the diverging field of a homogeneous line source [41Str, Chap. IV], [94Fel, Chap. 5]. For the parameters see (3.1.19).

3.1.3.2.3 Spherical wave

 

 

 

E = E

0

·

exp(i k0 nˆ r)

(r > λ

) ,

(3.1.25)

 

r

0

 

 

parameters see (3.1.21).

3.1.3.2.4 Di raction-free beams

3.1.3.2.4.1 Di raction-free Bessel beams

Di raction-free Bessel beams without transversal limitation are discussed in [05Hod, 91Nie, 88Mil].

E(x, y, z) = E0 · J0(a ρ) · exp {−i cos (θB) k0z}

(3.1.26)

with

E0 : amplitude vector [V/m],

J0 : zero-order Bessel function of the first kind [70Abr]; higher-order Bessel beams see [96Hal];

ρ = x2 + y2 : radial distance from the z-axis, a = k0 sin ΘB [m1],

ΘB : convergence angle of the conus of the plane wave normal to the z-axis, see Fig. 3.1.2.

Landolt-B¨ornstein

New Series VIII/1A1



80

3.1.3 Solutions of the wave equation in free space

[Ref. p. 131

 

 

 

3.1.3.2.4.2 Real Bessel beams

Real Bessel beams are limited by a finite aperture D of the optical elements needed or Gaussian beam illumination (Gaussian Bessel beams [87Gor]).

Methods of generation: axicons [85Bic] (Fig. 3.1.2), annular aperture in the focus of a lens [87Dur, 91Nie], holographic [91Lee] or di ractive [96Don] elements. Because of finite aperture di raction the latter display approximately the shape of (3.1.26) with cuto at a geometric determined radius rN , which includes N maxima (Fig. 3.1.3) and di erent amplitude patterns in dependence on z.

B

w

P1

P2 z z 0B

A

Fig. 3.1.2. Generation of a Bessel beam with help of an axicon A by a conus of plane-waves propagation directions.

maximum)

 

to

 

(normalized

 

Intensity

0.2

 

 

0

0

2

4

6

8

10

12

 

 

 

Radius r

 

 

 

Fig. 3.1.3. Transversal intensity structure of a Bessel beam ( J02(r)).

Advantage of Bessel beams: Large depth of focus 2 z0B between P 1 and P 2 in Fig. 3.1.2 (thin “needle of light”) for measurement purposes.

Disadvantage: Every maximum in Fig. 3.1.3 contains in the corresponding circular ring nearly the same power as the central peak. High power loss occurs if the central part is used only [05Hod].

3.1.3.2.4.3 Vectorial Bessel beams

Vectorial Bessel beams are discussed in [96Hal].

3.1.3.3 Solutions of the slowly varying envelope equation

Gaussian beams are solutions of the SVE-equation (3.1.7) [91Sal, 96Ped, 86Sie, 78Gra], which is equivalent to paraxial approximation or Fresnel’s approximation, see Sect. 3.1.4.

The transition from SVE-approximated Gaussian beams towards an exact solution of the wave equation in the non-paraxial range is given in a Lax-W¨unsche series [75Lax, 79Agr, 92Wue]. For contour plots of the relative errors in the Gaussian beam volume see [97For, 97Zen].

The vectorial field of Gaussian beams is discussed in [79Dav, 95Gou], containing a Lax-W¨unsche series; Gaussian beam in elliptical cylinder coordinates are given in [94Soi, 00Gou].

Landolt-B¨ornstein

New Series VIII/1A1