Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 901

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Ref. p. 131]

3.1 Linear optics

81

 

 

 

3.1.3.3.1 Gauss-Hermite beams (rectangular symmetry)

Elliptical higher-order Gauss-Hermite beam:

Emn(x, y, z) = E0 Um(x, z) Un(y, z) exp {−i k0z} ,

2 Rx(z) exp {i ϕm(z)} ,

(3.1.27)

Um(x, z) = wx(z)

 

Hm wx(z) exp

wx2 (z) i

(3.1.28)

 

 

 

 

 

 

 

w0x

 

 

 

 

2

x

 

 

x2

 

k0 x2

 

 

Un(y, z) = Um n(x y, z)

 

 

 

 

 

(3.1.29)

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w0x : the 1/e2-intensity waist radius,

 

 

 

 

 

 

z0x =

π w02x

 

 

: the Rayleigh distance (half depth of focus),

 

λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wx(z) = w0x

 

 

 

 

 

 

 

: the E00-beam 1/e2-intensity radius,

 

1 + z02

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rx(z) = z 1 +

z2

: the radius of curvature of the wavefront at position z,

 

z02

 

 

 

 

 

 

1

 

 

 

 

 

z

 

 

 

 

 

 

 

ϕm(z) =

2

+ m arctan

 

: Gouy’s phase, changing sign for the transition through z = 0,

z0

Hm

 

 

 

 

: the Hermite polynomial of order m [70Abr],

 

2

 

 

wx(z)

H0(ξ) = 1 , H1(ξ) = 2 ξ , H2(ξ) = 4 ξ2 2 , H3(ξ) = 8 ξ3 12 ξ , H4(ξ) = 16 ξ4 48 ξ2 + 12 , . . . ,

 

exp −ξ2/2

 

 

 

 

exp −ξ2/2

 

 

 

d ξ

 

 

π m! 2m Hm(ξ)

π n! 2n Hn(ξ) = δmn ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−∞

δmn =

1

for m = n

(orthogonality relation) .

0

for m = n

 

 

Example 3.1.4. Rotational symmetrical Gaussian fundamental mode (Gaussian beam):

Specialization of (3.1.27): m = n = 0 , w0x = w0y = w0 , r =

x2 + y2

.

E00(r, z) = E0

w0

exp

r2

 

kr2

exp

i

1

arctan

 

z

exp {−i kz} ,

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

w(z)

w2(z)

2R(z)

2

z0

w(z) = w0

 

 

 

 

, R(z) = z 1 + z02 .

 

 

 

 

 

 

 

 

 

1 + z02

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.1.30)

(3.1.31)

Properties of E00 (fundamental mode): The shape of the Gaussian E00-beam is depicted in Fig. 3.1.4. Parameters of E00 in Fig. 3.1.4 are:

C : curves with constant amplitude decrease as E(r, z) = E(0, z)/e or constant intensity decrease as I(r, z) = I(0, z)/e2 ,

P : phase fronts with radius of curvature R(z) ,

Landolt-B¨ornstein

New Series VIII/1A1


82

3.1.3 Solutions of the wave equation in free space

[Ref. p. 131

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wR

 

w0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z = 0

P

 

 

z

 

 

 

 

 

 

 

 

 

P

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 0

C

 

 

A

 

 

 

 

 

 

 

 

 

 

z 0

 

Fig. 3.1.4. Shape of the Gaussian E00-beam.

 

 

 

 

 

 

1.0

 

 

 

 

 

total

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

P3

 

P4

r/w)/l(0)

0.8

 

 

 

 

 

P(r/w)/P

0.8

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

(

 

 

 

 

 

Relativeencircledpower

0.6

 

 

 

 

 

Relativeintensityl

 

 

 

 

 

 

 

 

 

 

 

 

P1

 

 

 

 

 

P1

 

 

 

0.4

 

 

 

 

 

0.4

 

 

 

 

 

0.2

 

P2

P3

 

P4

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

 

 

 

 

 

 

0.5

1.0

1.5

2.0

2.5

 

0.5

1.0

1.5

2.0

2.5

a

0

b

0

 

Relative radial coordinate r /w

 

 

 

 

Relative radial coordinate r /w

 

 

Fig. 3.1.5. (a) Cross section of a Gaussian beam perpendicular to the z-axis. (b) Power transmitted by a circular aperture with the relative radius r/w in a cross section.

Table 3.1.3. Characteristic points in Fig. 3.1.5.

Point in

Relative abscissa

Relative intensity,

Relative transmission,

Characterization

Fig. 3.1.5a, b

r/w

Fig. 3.1.5a

Fig. 3.1.5b

 

 

 

 

 

 

P1

0.588

0.5

0.5

FWHM a

P2

1

0.135

0.865

1/e2-int. b

P3

1.57

0.01

0.99

trunc. c

P4

2.3

0.001

0.999

trunc. d

a Full width half maximum/2.

b 1/e2-intensity or 1/e-amplitude.

c Di raction of E00-beam by circular aperture 17 % intensity ripple [86Sie, p. 667].

dDi raction of E00-beam by circular aperture 1 % intensity ripple [86Sie, p. 667] (no essential e ect of truncation).

w0 : beam waist,

z0 : Rayleigh distance, half of the confocal parameter b = 2z0 (similarly to depth of focus in usual optics), that z-value, where the cross section π wR2 = 2π w02 of the Gaussian beam has doubled in comparison with the waist,

Θ0 = λ/w0) : 1/e2-intensity divergence angle toward the asymptotes A.

In Fig. 3.1.5a the cross section of a Gaussian beam perpendicular to the z-axis is given, in Fig. 3.1.5b the power transmitted by a circular aperture with the relative radius r/w in a cross section. Characteristic points in Fig. 3.1.5 are listed in Table 3.1.3.

Astigmatic and general astigmatic generalizations of the elliptical Gaussian beam: see Sect. 3.1.7.

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 131]

3.1 Linear optics

83

 

 

 

3.1.3.3.2 Gauss-Laguerre beams (circular symmetry)

 

 

 

 

 

 

 

 

r

 

l

 

 

2 r2

 

Elp(r, ψ, z) = E0 exp {−i [kz − ϕlp(z)]}

 

w0

2

Lpl

 

 

w(z)

w(z)

 

w2(z)

× exp

r2

k x2

cos ()

 

 

 

 

 

 

 

i

 

sin ()

 

 

 

 

 

 

w2(z)

2 R(z)

 

 

 

 

 

 

with

z : propagation direction,

r, ϕ : polar coordinates in the plane z-axis,

z0 =

πw02

 

: the Rayleigh distance (half depth of focus),

λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

z

 

 

2

: the E00-beam 1/e2-intensity radius,

w(z) = w0

 

 

 

 

 

 

z0

 

R(z) = z 1 +

z

2

: the radius of curvature of the wavefront at position z,

0

 

 

 

z

 

 

z

ϕlp = (2p + l + 1) arctan : Gouy’s phase, z0

Llp : Laguerre polynomial of degree p and order l [70Abr]:

l

 

l

 

 

 

l

(l + 1)(l + 2)

(l + 2) ξ −

1

 

2

 

L0

(ξ) = 1 , L1(ξ) = (l + 1)

ξ , L2(ξ) =

 

 

 

 

 

 

 

 

ξ

 

,

 

2

 

 

 

 

2

 

l

(ξ) =

(l + 3)(l + 2)(l + 1)

(l + 3)(l + 2)

ξ +

(l + 3)

 

2

1

3

 

 

 

 

 

 

L3

 

 

 

 

 

 

 

 

 

ξ

 

 

 

ξ

 

. . . ,

 

 

 

 

 

6

 

2

 

2

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

(l + p)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

d ξ ξl

exp(−ξ) Lpl (ξ) Lql (ξ) = δpq

(orthogonality relation) ,

 

 

 

 

 

 

 

 

 

 

 

 

p!

 

 

 

 

 

p! : the factorial p.

(3.1.32)

(3.1.33)

Two degenerate mode patterns are formed by the cosand sin-terms in (3.1.32).

l = p = 0 means the rotational symmetrical Gaussian beam E00.

The symmetry determines what system of Gauss-Laguerre polynomials or Gauss-Hermite polynomials is more appropriate for a wave field development.

3.1.3.3.3 Cross-sectional shapes of the Gaussian modes

In Fig. 3.1.6 intensity distributions of Gauss-Hermite modes Emn are given (rectangular symmetry), in Fig. 3.1.7 intensity distributions of Gauss-Laguerre modes Epl (circular symmetry).

Landolt-B¨ornstein

New Series VIII/1A1


84

 

3.1.4 Di raction

[Ref. p. 131

 

 

Rectangular symmetry (Gauss-Hermite modes)

 

00

10

30

 

y

x

 

 

01

11

31

 

03

13

33

Fig. 3.1.6. Intensity distributions of Gauss-Hermite modes Emn. The two digits at each distribution are m and n.

Circular symmetry (Gauss-Laguerre modes)

00

10

30

01

11

31

03

13

33

Fig. 3.1.7. Intensity distributions of Gauss-Laguerre modes Epl. The two digits at each distribution are p and l. .

3.1.4 Di raction

Di raction of light by aperture rims or amplitude and phase modifications inside the aperture:

Solutions of Maxwell’s equations taking into account the material properties of the aperture:

special cases: exact solutions [99Bor, 86Sta],

mostly: numerical solutions.

Starting with a field near the aperture with reasonable assumptions for this field or its measurement: large variety of methods for di erent ranges of validity [99Bor, 86Sta, 61Hoe].

Landolt-B¨ornstein

New Series VIII/1A1

Ref. p. 131]

3.1 Linear optics

85

 

 

 

3.1.4.1 Vector theory of di raction

Vectorial generalization of Kirchho ’s theory: Given E and H in an aperture E and H in the volume by Stratton-Chu Green’s function representation [23Kot, 41Str, 86Sol, 91Ish].

Two-dimensional problem and meridional incidence of light [61Hoe]: Separation of the polarizations E parallel and E perpendicular to the plane of incidence for half plane [99Bor], slit [99Bor], gratings [80Pet], and volume gratings [69Kog, 81Sol, 81Rus].

3.1.4.2 Scalar di raction theory

Two sources of scalar di raction theory are:

Transition from vectorial theory to scalar theory: [99Bor, 86Sol]. The information about the polarization is lost.

Mathematical formulation and generalization of Huygens’ principle: Each point on a wavefront may be regarded as a source of secondary waves, and the position of the wavefront at a later time is determined by the envelope of these secondary waves.

In Table 3.1.4 di raction formulae with fields given near the di raction aperture are listed. Figures 3.1.8 and 3.1.9 are related to Table 3.1.4.

Remarks on the formulae of Table 3.1.4:

(3.1.37): Approximation of (3.1.34): Huygens’ principle with an additional directional factor (Fresnel).

(3.1.38): Approximation of (3.1.36): Huygens’ principle with a modified directional factor.

(3.1.39): Fresnel’s approximation (= paraxial approximation). The approximation conditions from (3.1.34) to (3.1.39) resp. (3.1.40) are explained in [96For, 86Sta, 87Ree].

Fresnel’s approximation: The condition NF(a/d)2/4 1 [91Sal] is valid for sharp-edged apertures A, but it is weakened for the transmission of Gaussian-beam-like fields [86Sie, p. 635] or Gaussian-like soft apertures. Fresnel’s approximation describes the propagation of the field from plane z = 0 to plane z = z. This transformation can be cascaded to describe complex systems and is an often used tool in paraxial propagation of radiation (Sect. 3.1.4.5.2).

x’

Opaque screen

S (x’, y’, 0 )

 

x

 

 

 

y ’

Normal

 

 

vector n

dx dy

r0

rSP P (x, y, z )

 

z = 0

 

a

 

z

 

 

pi

 

A

 

b y

Diffracted field

E (x,y,z)

Fig. 3.1.8. Di raction at an aperture A with source

terms E(x , y , 0) and/or ∂zE(x , y , z) z=0, respectively, and a or b the maximum radial distances

of source S or image point P , respectively. pi symbolizes di erent plane waves for (3.1.41)–(3.1.43).

Landolt-B¨ornstein

New Series VIII/1A1


B¨ornstein-Landolt

VIII/1A1 Series New

Table 3.1.4. Di raction formulae with fields given near the di raction aperture (rSP : see Fig. 3.1.8).

Integrals

Formula

Restrictions

Ref.

Rayleigh-

Sommerfeld of 1st kind

Rayleigh-

Sommerfeld of 2nd kind

Fresnel-Kirchho

RayleighSommerfeld

1st kind approx.

Fresnel-Kirchho approximation, refers to

Fig. 3.1.8

 

A

 

 

 

 

 

∂ z

rSP

 

 

 

 

 

 

ERS1(x, y, z) =

 

1

 

E(x

, y , 0)

 

 

exp(i krSP)

d x d y

 

 

 

 

 

 

 

 

 

 

 

 

 

ERS2(x, y, z) =

 

 

1

A

 

∂ E(x , y , z

)

z =0

exp(ikrSP)

d x d y

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ z

 

 

 

 

rSP

 

 

 

 

 

EFK(x, y, z) =

1

 

[ERS1(x, y, z) + ERS2(x, y, z)]

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

i λ A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rSP

 

 

 

 

 

 

 

 

ERS1a(x, y, z) =

1

 

 

E(x , y , 0)

exp(i krSP)

cos (n, rSP) d x d y

 

 

 

 

 

 

 

 

 

 

 

 

i λ A

 

 

 

 

 

 

 

rSP

 

·

 

2

 

 

 

 

EFKa(x, y, z) =

 

1

 

 

E(x , y , 0)

exp(i krSP)

 

1 + cos (n, rSP)

d x

d y

 

 

 

 

 

 

 

 

 

(3.1.34)

rSP > λ0 ,

[99Bor]

plane aperture

[86Sta]

(3.1.35)

rSP > λ0 ,

 

plane aperture

 

(3.1.36)

rSP > λ0 ,

 

curved aperture

 

 

 

(3.1.37)

rSP λ0

 

(3.1.38)

rSP λ0

 

Fresnel’s

 

i exp (−ikz)

 

A

 

 

 

(x − x )2 + (y

y )2

 

 

 

 

 

 

[99Bor]

EFre(x, y, z) =

 

E(x , y

, 0) exp

i π

d x

d y

(3.1.39) z

 

λ

 

[96For]

approximation,

 

 

 

λd

 

 

λ z

 

 

 

 

 

0

[97For]

refers to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[87Ree]

Fig. 3.1.8

[86Sta]

 

 

 

 

(continued)

86

ractionDi 4.1.3

131 .p .[Ref