Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 882

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

 

References for 4.1

203

 

 

 

96Fre

French, S., Ebrahimzadeh, M., Miller, A.: Opt. Commun. 128 (1996) 166.

 

96Lin

Lin, S., Suzuki, T.: Opt. Lett.: 21 (1996) 579.

 

96Mom

Momose, T., Wakabayashi, T., Shida, T.: J. Opt. Soc. Am. B 13 (1996) 1706.

 

96Qia

Qian, L., Benjamin, S.D., Smith, P.W.E.: Opt. Commun. 127 (1996) 73.

 

96Sch

Schade, W., Blanke, T., Willer, U., Rempel, C.: Appl. Phys. B 63 (1996) 99.

 

96Sha

Shama, L.B., Daido, H., Kato, Y., Nakai, S., Zhang, T., Mori, Y., Sasaki, T.: Appl.

 

Phys. Lett. 69 (1996) 3812.

 

96Spe

Spence, D.E., Wielandy, S., Tang, C.L., Bosshard, C., G¨unter, P.: Appl. Phys. Lett. 68

 

(1996) 452.

 

96Suh

Suhre, D.R., Taylor, L.H.: Appl. Phys. B 63 (1996) 225–228.

 

96Sut

Sutherland, R.L.: Handbook of nonlinear optics, New York: Marcel Dekker, 1996.

 

96Ume

Umemura, N., Kato, K.: Appl. Opt. 35 (1996) 5332.

 

96Yap

Yap, Y.K., Inagaki, M., Nakajima, S., Mori, Y., Sasaki, T.: Opt. Lett. 21 (1996) 1348.

96Zho

Zhou, W.-L., Mori, Y., Sasaki, T., Nakai, S.: Opt. Commun. 123 (1996) 583.

 

97Ber

Berkeland, D.J., Cruz, F.C., Bergquist, J.C.: Appl. Opt. 36 (1997) 4159.

 

97Cer

Cerullo, G., Nisoli, M., de Silvestri, S.: Appl. Phys. Lett. 71 (1997) 3616.

 

97Cha

Chandra, S., Allik, T.H., Catella, G., Utano, R., Hutchinson, J.A.: Appl. Phys. Lett.

 

71 (1997) 584.

 

97Coo

Cook, G.: Appl. Opt. 36 (1997) 2511.

 

97Kat

Kato, K.: Appl. Opt. 36 (1997) 2506.

 

97Kar

Kartaloglu, T., Koprulu, K.G., Aytur, O.: Opt. Lett. 22 (1997) 280.

 

97Kel

Kellner, T., Heine, F., Huber, G.: Appl. Phys. B 65 (1997) 789.

 

97Kom

Komatsu, R., Sugawara, T., Sassa, K., Sarukura, N., Liu, Z., Izumida, S., Segawa, Y.,

 

Uda, S., Fukuda, T., Yamanouchi, K.: Appl. Phys. Lett. 70 (1997) 3492.

 

97Lod

Lodahl, P., Sorensen, J.L., Polzik, E.K.: Appl. Phys. B 64 (1997) 383.

 

97Oie

Oien, A.L., McKinnie, I.T., Jain, P., Russel, N.A., Warrington, D.M.: Opt. Lett. 22

 

(1997) 859.

 

97Raf

Ra y, J., Debuisschert, T., Pocholle, J.P.: Opt. Lett. 22 (1997) 1589.

 

97Rei

Reid, D.T., McGowan, C., Sleat, W., Ebrahimzadeh, M., Sibbett, W.: Opt. Lett. 22

 

(1997) 525.

 

97Sch

Scheidt, M., Beier, B., Boller, K.J., Wallenstein, R.: Opt. Lett. 22 (1997) 1287.

 

97Sri

Srinivasan-Rao, T., Babzien, M., Sakai, F., Mori, Y., Sasaki, T.: Appl. Phys. Lett. 71

 

(1997) 1927.

 

97Sto

Stoll, K., Zondy, J.J., Acef, O.: Opt. Lett. 22 (1997) 1302.

 

97Tan

Tang, Y., Rae, C.F., Rahl , C., Dunn, M.H.: J. Opt. Soc. Am. B 14 (1997) 3442.

 

97Ume

Umemura, N., Kato, K.: Appl. Opt. 36 (1997) 6794.

 

97Wan

Wang, T., Dunn, M.H., Rae, C.F.: Opt. Lett. 22 (1997) 763.

 

97Wu

Wu, Y.C., Fu, P.Z., Wang, J.X., Xu, Z., Zhang, L., Kong, Y., Cheng, C.: Opt. Lett. 22

 

(1997) 1840.

 

98Abe

Abedin, K.S., Haidar, S., Konno, Y., Takyu, C., Ito, H.: Appl. Opt: 37 (1998) 1642.

98Cho

Chou, H.P., Slater, R.C., Wang, Y.: Appl. Phys. B 66 (1998) 555.

 

98Dou

Douillet, A., Zondy, J.T.: Opt. Lett. 23 (1998) 1259.

 

98Edw

Edwards, T.J., Turnbull, G.A., Dunn, M.H., Ebrahimzadeh, M., Colville, F.G.: Appl.

 

Phys. Lett. 72 (1998) 1527.

 

98Ehr

Ehret, S., Schneider, H.: Appl. Phys. B 66 (1998) 27.

 

98Gol

Golubovic, B., Reed, M.K.: Opt. Lett. 23 (1998) 1760.

 

98Lae

Laenen, R., Simeonidis, K., Laubereau, A.: J. Opt. Soc. Am. B 15 (1998) 1213.

 

98Mat

Matsubara, K., Tanaka, U., Imajo, H., Hayasaka, K., Ohmukai, R., Watanabe, M.,

 

Urabe, S.: Appl. Phys. B 67 (1998) 1.

 

Landolt-B¨ornstein

New Series VIII/1A1


204

References for 4.1

 

 

98Pet1

Petrov, V., Rempel, C., Stolberg, K.P., Schade, W.: Appl. Opt: 37 (1998) 4925.

98Pet2

Petrov, V., Rotermund, F., Noack, F.: Electron. Lett. 34 (1998) 1748.

98Pet3

Petrov, V., Rotermund, F., Noack, F., Komatsu, R., Sugawara, T., Uda, D.: J. Appl.

 

Phys. 84 (1998) 5887.

98Rot

Rotermund, F., Petrov, V.: Opt. Lett. 23 (1998) 1040.

98Ruf

Ru ng, B., Nebel, A., Wallenstein, R.: Appl. Phys. B 67 (1998) 537.

98Shi

Shirakawa, A., Kobayashi, T.: Appl. Phys. Lett. 72 (1998) 147.

98Ste

Steinbach, D., H¨ugel, W., Wegener, M.: J. Opt. Soc. Am. B 15 (1998) 1231.

98Tsu

Tsunekane, M., Kimura, S., Kimura, M., Taguchi, N., Inaba, H.: Appl. Phys. Lett. 72

 

(1998) 3414.

98Yap

Yap, I.K., Haramura, S., Taguchi, A., Mori, Y., Sasaki, T.: Opt. Commun. 145 (1998)

 

101.

98Zha

Zhang, J.Y., Huang, J.Y., Wang, H., Wong, K.S., Wong, G.K.: J. Opt. Soc. Am. B 15

 

(1998) 200.

99Dmi

Dmitriev, V.G., Gurzadyan, G.G., Nikogosyan, D.N.: Handbook of nonlinear optical

 

crystals, third, revised edition, Berlin: Springer, 1999.

99Hai

Haidar, S., Nakamura, K., Niwa, E., Masumoto, K., Ito, H.: Appl. Opt. 38 (1999) 1798.

99Kou

Kouta, H., Kuwano, Y.: Opt. Lett. 24 (1999) 1230.

00Bha

Bhar, G.C., Kumbhakar, P., Chatterjee, U., Rudra, A.M., Nagahori, A.: Opt. Commun.

 

176 (2000) 199.

00Bye

Byer, R.L.: IEEE J. Sel. Top. Quantum Electron. 6 (2000) 911.

00Cha

Charra, F, Gurzadyan, G.G.: Nonlinear dielectric susceptibilities, Landolt-B¨ornstein,

 

New series III, Vol. 30B, Berlin, Heidelberg: Springer, 2000, 486 pp. (ISBN

 

3-540-65567-0).

00Kag

Kagebayashi, Y., Deki, K., Morimoto, Y., Miyazawa, S., Sasaki, T.: Jpn. J. Appl. Phys.

 

39 (2000) L1224.

00Kon

Kondratyuk, N.V., Shagov, A.A., Demidchik, K.L., Yurkin, A.M., Kokh, A.E.: Kvanto-

 

vaya Elektron. 30 (2000) 253; Quantum Electron. (English Transl.) 30 (2000) 253.

00Sas

Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y.K., Kamimura, T.: Mater. Sci. Eng. 30

 

(2000) 1.

01Koj

Kojima, T., Konno, S., Fujikawa, S., Yasui, K.: Electr. Eng. Jpn. 137 (2001) 18.

Landolt-B¨ornstein

New Series VIII/1A1



Ref. p. 212]

4.2 Frequency conversion in gases and liquids

205

 

 

 

4.2 Frequency conversion in gases and liquids

C.R. Vidal

4.2.1 Fundamentals of nonlinear optics in gases and liquids

This chapter covers the properties of a nonlinear medium having spherical symmetry like gases and liquids. They therefore clearly di er from the properties of most solids (see Chap. 4.1).

Lasers have become so powerful these days that one can easily generate various kinds of optical overtones

 

 

ωo = ni · ωi ± kq · ωres,q > 0 ,

(4.2.1)

i,q

where ni and kq are some integer (including ni = 0 or kq = 0), using a suitable nonlinear medium with eigenfrequencies ωres,q and an incident laser frequency ωi (conservation of energy).

In case of frequency conversion in gases one generally has kq = 0 and deals with sum or di erence frequency mixing

ωs = ωi ± ωj > 0 (4.2.2)

j

which may be enhanced by exploiting suitable resonances of the atomic or molecular gas.

In case of stimulated scattering one generally has ni = 1. Then ωres,q is a suitable manifold of atomic or molecular (rotational or vibrational) resonances of the gaseous or liquid scattering medium numbered by the index q. Like in classical spectroscopy the plus sign stands for Stokes processes, whereas the minus sign is responsible for Anti-Stokes processes.

4.2.1.1 Linear and nonlinear susceptibilities

Linear and nonlinear susceptibilities are discussed in [87Vid].

The complex linear susceptibility is given by

χ(1) = χ¯(1) + i χ˜(1) =

1

 

ag |2

(4.2.3)

 

 

 

 

(ag

ω)

 

 

a

 

 

with the complex transition frequency

 

 

ag = ωag i Γag

 

 

 

 

 

(4.2.4)

and the dipole moment matrix elements µag between the states |a and |g . The nonlinear polarization is

P

(4.2.5)

NL = P (n) .

 

 

 

n=2

Landolt-B¨ornstein

New Series VIII/1A1


206

 

4.2.1 Fundamentals of nonlinear optics in gases and liquids

[Ref. p. 212

 

 

The definition of the electric field amplitude is given by

 

E(r, t) =

1

j

ej Eˆ(r, ωj ) exp(i kj r − i ωj t) + c.c. ,

(4.2.6)

 

2

resulting in the definition of the total polarization

1

P (r, t) = 2 ej P (r, ωj ) exp(i ωj t) + c.c. , (4.2.7)

j

where the n th-order polarization is given by

(n)

 

n!N

(n)

 

 

 

 

 

 

 

 

α1 n

 

 

 

 

P αs

(r, ωs) = 2 n−1 0

 

(−ωs; ω1

. . . ωn) Eα1 (r, ω1) . . . Eαn (r, ωn) .

(4.2.8)

χαsα1

...αn

 

 

 

 

...α

 

 

 

 

The αs are the unit vectors of the spatial coordinates, which may be cartesian, cylindrical, or spherical. The polarization can be expressed in terms of the density matrix [71Han]

 

 

P (t) = N Tr [ρ(t) µ] = N ρmn(t) µmn ,

(4.2.9)

mn

whose elements are given by i ρ˙mn = [H, ρ]mn , where the Hamiltonian H = H 0 + H H = −µE(t) . From a perturbation approach one obtains

(n)

 

 

(−ωs; ω1

. . . ωn) =

 

 

 

 

 

 

 

 

 

χα12...αn

 

 

 

 

 

 

 

 

 

1

gb1

ρ(g)

 

 

 

g|esµ|b1 b1|e1µ|b2 . . . bn|enµ|g

 

 

.

 

 

 

 

 

 

 

 

n!

 

n

(b1g

ω1

− · · · −

ωn)(b2g

ω2

− · · · −

ωn) . . . . . . (bng

ωn)

 

n

 

 

 

 

 

 

 

 

 

 

...b

 

 

 

 

 

 

 

 

 

 

 

 

 

contains

(4.2.10)

4.2.1.2 Third-order nonlinear susceptibilities

These processes are responsible for the lowest-order frequency conversion in gases such as sum or di erence frequency mixing, stimulated scattering processes and photorefraction. For the degenerate case the dominant terms in a system of spherical symmetry are [71Han]:

χ(3)(

3 ω; ω, ω, ω) = χ(3)(3 ω) = 3

 

g|esµ|a a|e1µ|b b|e2µ|c c|e3µ|g

,

(4.2.11)

T

(ag

ω)(bg

2 ω)(cg

3 ω)

 

 

 

 

abc

 

 

 

 

 

 

 

 

 

where the index T stands for the third harmonic generation.

For the nondegenerate case we have the general third-order nonlinear susceptibility [62Arm, 71Han]

(3)

 

 

, ω2, ω3) =

 

 

 

 

 

 

 

 

 

χα123s (ωs; ω1

 

 

 

 

 

 

 

 

 

1

ρ(g)

 

g|esµ|a a|e1µ|b b|e2µ|c c|e3µ|g

 

 

(4.2.12)

 

 

 

 

 

 

6 3

 

ω1

ω2

ω3)(bg

ω2

ω3)(cg

ω3)

 

(ag

 

 

 

 

 

 

 

 

gabc

 

 

 

 

 

 

 

 

 

 

 

 

 

obeying the conservation of energy

 

 

 

 

 

 

 

 

ωs = ω1 + ω2 + ω3 .

 

 

 

 

 

 

 

 

 

 

 

(4.2.13)

Landolt-B¨ornstein

New Series VIII/1A1