Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 883

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Ref. p. 212]

4.2 Frequency conversion in gases and liquids

207

 

 

 

4.2.1.3 Fundamental equations of nonlinear optics

Maxwell’s equations in SI units [62Jac, 87Vid] are given by (1.1.4)–(1.1.7) and the material equations (1.1.8) and (1.1.9), see Chap. 1.1.

With the following three approximations

1.magnetization M = 0 : µ0 H = B → µ = 1 ,

2.source-free medium: ρ = 0 ,

3.currentless medium: j = 0

we get the simplified Maxwell equations

 

 

 

 

 

 

 

 

 

 

 

 

 

∂H

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.2.14)

 

× E = −µ0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂E

 

 

 

 

∂P

 

 

 

 

 

 

 

 

 

× H = 0

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.2.15)

∂t

∂t

 

 

 

 

 

 

 

 

 

 

 

 

resulting in the wave equation

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2E

1

 

 

 

 

2P

 

 

 

 

 

 

 

 

 

∆E −

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.2.16)

c2

 

∂t2

0c2

∂t2

 

 

 

 

 

 

 

 

with the polarization P = P L + P NL . This gives the driven wave equation

 

 

 

n2 2E

 

 

 

0 2E

1 2P NL

 

 

∆E −

 

 

 

 

i

 

 

 

 

 

=

 

 

 

 

 

 

.

 

(4.2.17)

c2

 

∂t2

c2

 

∂t2

0c2

 

∂t2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

ˆ

(z, ω) and the slow-amplitude approximation

With the plane-wave approximation E

(r, ω) = E

 

ˆ

 

 

ˆ

 

 

 

ˆ

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

∂Ej

 

 

∂Ej

 

 

 

 

 

 

 

 

 

 

 

 

(4.2.18)

 

 

 

ω Ej ,

 

 

 

k Ej ,

 

 

 

 

 

 

∂t

 

∂z

 

 

 

 

 

we get the fundamental equations of nonlinear optics

 

ˆ

 

 

ωj

 

 

 

 

NL

 

 

 

 

 

 

 

 

κj ˆ

 

 

 

d Ej

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= i

 

Pj

 

 

exp(i kj z)

 

Ej

,

(4.2.19)

 

d z

2 0 c nj

 

 

2

where κ is the absorption coe cient and where the total derivative is given by the partial derivatives

ˆ

 

 

ˆ

 

nj

 

ˆ

 

 

d Ej

=

∂Ej

+

 

∂Ej

,

(4.2.20)

 

 

 

 

 

d z

 

∂z

c ∂t

 

 

 

 

 

ˆ

and Ej is a slowly-varying-envelope function in space and time.

4.2.1.4 Small-signal limit

In this case the only nonlinear polarization for a medium of density N is given by

 

 

3

 

 

(3)

 

 

 

 

 

 

 

Ps(3)(ωs) =

 

0

N χT

(−ωs; ω1, ω2, ω3)E1E2E3 .

 

 

 

(4.2.21)

2

 

 

 

Within the plane-wave approximation one obtains

 

 

 

 

 

ˆ

= i c ns

N χT

E10E20E30 exp

κ1

2

+ κ3

i ∆ k z

,

(4.2.22)

 

d z

 

d Es

3 π ωs

(3)

 

+ κ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1


208

 

4.2.1 Fundamentals of nonlinear optics in gases and liquids

[Ref. p. 212

 

 

 

where the wave-vector mismatch is given by the conservation of momenta

 

k = ks − k1 − k2 − k3 .

(4.2.23)

The wave vector kj of the j th wave is given by the refractive index nj

 

kj =

ωj nj

.

(4.2.24)

 

 

c

 

With the optical depth τj = κj L = σj(1)(ωj ) N L and the length L of the nonlinear medium we have

Eˆs(L) = i 3 π ωs N L 0χT(3) E10 E20 E30

 

τ

τs

 

 

τs − τ0

 

τ

2

exp

i ∆ k L 1 ,

 

 

 

exp

 

 

 

 

 

 

c ns

s 0

i ∆ k L

2

 

 

 

2

 

 

 

 

 

 

 

(4.2.25)

where the total optical depth τ0 = τ1 + τ2 + τ3 . With the intensity

Φj = 0 nj c |Ej |2

2

the intensity conversion is given by

 

Φs

=

6 π ωs

(3)

(−ωs; ω1, ω2, ω3)

2

Φ10Φ20Φ30

F (∆ k L, τ0, τs) ,

 

 

 

N L χT

 

 

 

 

 

ns

c2ns

 

 

n1n2n3

 

containing the general phase-matching factor

 

 

 

 

 

 

 

s cos (∆ k L)

 

 

 

 

exp (−τ0) + exp (−τs) 2 exp

τ0

2

τ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

F (∆ k L, τ0, τs) =

 

 

 

 

 

 

 

 

 

 

 

 

< 1 .

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τs − τ0

 

+ (∆ k L)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.2.26)

(4.2.27)

(4.2.28)

4.2.1.5 Phase-matching condition

Maximum conversion e ciency is achieved for conservation of momenta kj where ∆ k = 0

 

ω1 n1 + ω2 n2 + ω3 n3 = ωs ns .

(4.2.29)

In case of the third harmonic generation this gives n1 = ns . Frequency mixing in a two-component system results in

 

 

 

 

3

 

 

Na

 

ωs χ¯b(1)

(ωs)

=1ωj χ¯b(1)

(ωj )

 

=

 

j

.

(4.2.30)

 

3

Nb

j

(1)

(1)

 

 

 

 

 

 

 

 

 

 

=1ωj χ¯a (ωj ) − ωs χ¯a (ωs)

 

For the third harmonic generation in a two-component system we have:

Na = χ¯(1)b (3 ω) − χ¯(1)b (ω) .

Nb χ¯(1)a (ω) − χ¯(1)a (3 ω)

The frequency mixing in a one-component system is given by:

3

ωs χ¯(1)(ωs) = ωj χ¯(1)(ωj ) . j=1

(4.2.31)

(4.2.32)

Landolt-B¨ornstein

New Series VIII/1A1



Ref. p. 212]

4.2 Frequency conversion in gases and liquids

209

 

 

 

4.2.2 Frequency conversion in gases

The following conditions have to be met for large conversion e ciencies:

1.a large nonlinear susceptibility χ(3)T which may be enhanced by a proper two-photon resonance,

2.large column densities with a proper phase matching,

3.small optical depths for the incident and generated waves to avoid reabsorption.

4.2.2.1 Metal-vapor inert gas mixtures

Metal-vapor inert gas mixtures are generally generated in concentric heat pipes because for e cient frequency mixing the phase matching can be accurately and independently adjusted through the partial pressures in the heat pipe [71Vid, 87Vid, 96Vid].

Tables of the multi-wave mixing experiments in di erent gaseous nonlinear media are arranged according to the elements, Table 4.2.1. For every element the wavelength is given together with the method of generation. The method of generation is indicated where (ω1 + ω1)Res + ω2 , for example, indicates a two-photon resonance of ω1 in the particular atomic or molecular medium and the additional wave ω2 can make the resulting radiation tunable.

4.2.2.2 Mixtures of di erent metal vapors

The modified concentric heat pipe [71Vid, 87Vid, 96Vid] is used for phase matching with small partial pressures avoiding strong homogeneous broadening.

In Table 4.2.2 mixtures of di erent metal vapors are listed.

4.2.2.3 Mixtures of gaseous media

For λ > 106 nm one prefers gas cells with lithium fluoride windows [87Vid]. For λ < 106 nm one should use either pulsed nozzle beams [87Bet] without windows or gas cells with a fast shutter [85Bon].

In Table 4.2.3 mixtures of gaseous media are given.

Landolt-B¨ornstein

New Series VIII/1A1

210

4.2.2 Frequency conversion in gases

[Ref. p. 212

 

 

 

Table 4.2.1. Metal-vapor inert gas mixtures.

Vapor

Wavelength [nm]

Method

Ref.

 

 

 

 

Na

354.7

3 · ω1

[75Blo1, 75Blo2, 76Oha]

Na

330.5

(ω1 + ω1)Res + ω2

[74Blo]

Na

268 (cw)

(ω1 + ω2)Res + ω3

[84Bol]

Na

231

(ω1 + ω2)Res + ω3

[76Bjo]

Na

151.4

7 · ω1

[77Gro2, 79Mit]

Na

117.7

9 · ω1

[77Gro1, 79Mit]

Rb

354.7

3 · ω1

[71You, 75Blo1, 76Pue,

 

 

 

76Oha]

Cs

213.4

(ω1 + ω1)Res + ω1

[74Leu, 75War]

Be

121–123

(ω1 + ω1)Res + ω2

[79Mah]

Mg

173.5

2 · ω1 + ω1 + ω1

[85Hut]

Mg

140–160

(ω1 + ω1)Res + ω2

[76Wal, 80Jun, 96Ste]

Mg

143.6 (cw)

(ω1 + ω1)Res + ω1

[83Tim]

Mg

115, 121.2, 127

(ω1 + ω1)Res + ω2

[81Car, 85Car]

Mg

121–129

(ω1 + ω1)Res + ω2

[78McK]

Mg+

123.6

(ω1 + ω1)Res + ω2

[85Leb]

Ca+

200

3 · ω1

[76Fer]

Ca

127.8

(ω1 + ω1)Res + ω2

[75Sor]

Zn

106–140

(ω1 + ω1)Res + ω2

[82Jam]

Cd

118.2, 152, 177.3

(ω1 + ω1)Res + ω2; 3 · ω1

[72Kun]

Cd

128.7–135.3

(ω1 + ω1)Res + ω2

[84Miy]

Cd

145.3–171.1

(ω1 + ω1)Res − ω2

[86Miy]

Sr

155.3, 166.7, 169.7, 173.5, 183.5 (cw)

(ω1 + ω2)Res + ω3

[90Nol1]

Sr

184.6, 185.7, 192.0, 195.8, 208.8, 217.9 (cw)

(ω1 + ω2)Res + ω3

[90Nol1]

Sr

171.2, 168.3, 169.7, 190 (cw)

(ω1 + ω2)Res + ω3

[77Bjo, 78Fre]

 

 

(ω1 + ω1)Res + ω2

[90Nol2]

Ca

153.0, 159.5, 161.3, 163.3, 167.0 (cw)

(ω1 + ω2)Res + ω3

[90Nol1]

Ca

169.7, 170.9, 172.3, 173.1, 176.9 (cw)

(ω1 + ω2)Res + ω3

[90Nol1]

Zn

134.5–141.6 (cw)

(ω1 + ω2)Res + ω3

[90Nol1]

Cd

138.1–140.3

(ω1 + ω1)Res + ω2

[88Sch]

Sr

177.8–195.7

(ω1 + ω1)Res + ω2

[74Hod, 75Sor, 76Sor]

Sr

165–166

(ω1 + ω2)Res + ω3

[78Eco]

Sr

192.3

(ω1 + ω1)Res + ω1

[80Pue, 81Egg]

Sr

171.2

(ω1 + ω1)Res + ω2

[80Eco]

Ba

190–200

(ω1 + ω1)Res + ω2

[80Hei]

Hg

109–196

(ω1 + ω1)Res ± ω2

[83Hil2]

Hg

184.9, 143.5, 140.1, 130.7, 125.9, 125.0

(ω1 + ω1)Res ± ω2

[81Bok]

Hg

125.1, 183.3, 208.5

(ω1 + ω1)Res ± ω2

[81Tom]

Hg

124.7–125.5, 122.8–123.5, 117.4–122

(ω1 + ω1)Res + ω2

[82Mah, 82Tom]

Hg

120.3

(ω1 + ω1)Res + ω2

[76Hsu]

Hg

87.5–105, 99.1–126.8

(ω1 + ω1)Res + ω2

[85Her, 83Hil2]

Hg

89.6

(ω1 + ω1)Res + ω1

[78Sla]

Hg

132–185

(ω1 + ω1)Res + ω2

[86Hil2]

Tl

195.1

(ω1 + ω1)Res + ω1

[75Wan]

Eu, Yb

185.5, 194

(ω1 + ω1)Res + ω2

[75Sor, 76Sor]

Table 4.2.2. Mixtures of di erent metal vapors.

Mixture

Wavelength [nm]

Method

Ref.

 

 

 

 

Na + K

2–25 µm

(ω1 − ω2)Res − ω3

[74Wyn]

Na + Mg

354.7

3 · ω1

[75Blo2]

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 212]

4.2 Frequency conversion in gases and liquids

211

 

 

 

 

 

 

Table 4.2.3. Mixtures of gaseous media.

 

 

 

 

 

 

 

 

 

 

Gas

Wavelength [nm]

Method

Ref.

 

 

 

 

 

 

 

 

He, Ne, Ar, Kr, Xe

231.4

3

· ω1

 

[67New, 69War]

 

He

53.2

5

· ω1

 

[76Rei, 77Rei,

77She,

 

 

 

· ω1

 

78Rei2, 78Rei1]

 

He

38

7

; 5 · ω1; 7 · ω1

[77Rei, 78Rei2]

 

He

82.8, 50, 35.5

3

· ω1

[83Bok]

 

He, Ne

106.4

(ω1 + ω1)Res + ω2

[78Rei2]

 

He, Ne

88.7

3

· ω1

 

[78Rei2, 78Rei1]

 

He, Ne

76, 70.9, 62.6, 59.1

4

· ω1 ± ω2

[77She, 78Rei2]

 

He, Xe

49.7, 35.5

5

· ω1; 7 · ω1

[83Bok]

 

Ne

53.2, 118.2

5

· ω1; (ω1 + ω1)Res + ω2

[76Rei, 77She, 78Rei2]

Ne

72.05–73.58, 74.3–74.36

3

· ω1

 

[84Hil]

 

Ar

120.4

(ω1 + ω1)Res + 3 · ω1

[80Din]

 

Ar

85.7–87.0, 97.4–104.8

3

· ω1

 

[83Hil3, 83Mar]

 

Ar

106.7

(ω1 + ω1)Res + ω1

[82Mil]

 

Ar

102.6–102.8

3

· ω1

 

[79Rei, 80Rei]

 

Ar, Kr

61.6, 53.2

5

· ω1

 

[78Rei2, 81Rei]

 

Ar

57

(ω1 + ω1)Res + ω1

[76Hut]

 

Kr

131.2, 92.3, 92.8, 94.2

(ω1 + ω1)Res ± ω2

[85Bon]

 

Kr

121.6

3

· ω1

 

[81Hil, 80Lan, 81Bat]

Kr

123.6

(ω1 + ω1)Res + ω1

[82Mil]

 

Kr

112.4, 120.3–123.6

(ω1 + ω1)Res + ω2

[79Cot1, 79Cot2]

 

Kr

131.2

(ω1 + ω1)Res − ω2

[85Bon]

 

Kr

72.5–83.5; 127–180

(ω1 + ω1)Res ± ω2

[87Hil]

 

Kr

121–200

(ω1 + ω1)Res − ω2

[90Mar]

 

Kr, Xe

71–92

(ω1 + ω1)Res + ω2

[89Miy]

 

Kr, Xe

110–210

(ω1 + ω1)Res ± ω2

[82Hil]

 

Xe

84.6–109.5, 155–220

(ω1 + ω1)Res ± ω2

[82Hil, 82Hag, 83Hil1]

Xe

155

(ω1 + ω1)Res − ω2

[83Hut]

 

Xe

147

(ω1 + ω1)Res + ω1

[82Mil]

 

Xe

140.3–146.9

3

· ω1; (ω1 + ω1)Res + ω2

[81Hil, 83Val]

 

Xe

74.8, 75, 75.2

(ω1 + ω1)Res + ω1

[82Mui]

 

Xe

125.4, 125.9, 126.1

(ω1 + ω1)Res − ω2

[82Mui]

 

Xe

101.5, 101.8, 13.0

(ω1 + ω1)Res + ω2

[82Mui]

 

Xe

163.1–194.6

(ω1 + ω1)Res ± ω2

[74Kun]

 

Xe

118.2

3

· ω1

 

[83Kun, 76Kun, 82Gan,

 

 

 

· ω1

 

83Bok]

 

Ar, Kr, Xe, CO, N2

72; 90.4–102.5

3

 

[87Pag]

 

Ne, Ar, Kr, Xe, Hg

60–200

(ω1 + ω1)Res ± ω2

[86Hil1]

 

Ar, Xe, CO

74.2, 80.4, 95.1, 98.2, 100.1,

ω1 + ω1 + ω2; 3 · ω1

[89Cro]

 

 

116.5, 117.8, 123.6

 

 

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1