Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 866

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Ref. p. 245]

4.4 Phase conjugation

235

 

 

 

4.4 Phase conjugation

H.J. Eichler, A. Hermerschmidt, O. Mehl

4.4.1 Introduction

Phase conjugation is a nonlinear optical process which generates a light beam having the same wavefronts as an incoming light beam but opposite propagation direction, see Fig. 4.4.1. Therefore phase conjugation is also called wavefront reversal. A nonlinear optical device generating a phaseconjugated wave is called a phase conjugator or Phase-Conjugate Mirror (PCM ).

e i ( r)

e i ( r)

e i ( r)

e -i ( r)

 

 

 

 

 

 

 

 

Fig. 4.4.1. Wavefront reflection at a conven-

Conventional mirror

Phase-conjugate mirror

tional mirror and at a phase-conjugate mirror

(PCM).

In Fig. 4.4.2 we consider the conjugation property of a PCM on a probe wave emanating from a point source. A diverging beam, after “reflection” from an ideal PCM, gives rise to a converging conjugate wave that precisely retraces the path of the incident probe wave, and therefore propagates in a time-reversed sense back to the same initial point source.

kkout

kout==- kin

kin

Conventional mirror

Phase conjugate mirror

Conventional mirror

Phase-conjugate mirror

Fig. 4.4.2. Beam propagation after reflection at a conventional mirror and a PCM, both illuminated by a point source.

A phase conjugator reflects light, mostly laser beams, only if the incident power is high enough (self-pumped phase conjugator ) or if the nonlinear material in the phase conjugator is pumped by additional laser beams, e.g. two additional beams in a degenerate four-wave mixing arrangement. In principle phase conjugation could be achieved also by a deformable mirror which is controlled by a wavefront sensor adapting the local mirror curvature to the incoming wavefront. Instead of a deformable mirror also a 2-dimensional phase modulator could be used. However, deformable mirrors and other phase modulators up to now are more complicated set-ups with longer reaction periods than nonlinear optical phase conjugators to solve practical problems requiring phase conjugation.

Landolt-B¨ornstein

New Series VIII/1A1


236

4.4.3 Phase conjugation by degenerate four-wave mixing

[Ref. p. 245

 

 

 

4.4.2 Basic mathematical description

The incoming wave Ein is given by (4.4.1) with frequency f , where the amplitude E0 and phase Φ are combined to the complex amplitude A. The complex conjugate is denoted by c.c.

Ein(x, y, z, t) =

1

E0(x, y, z) e2 π i (f t+Φ(x,y,z))

+ c.c. = A(x, y, z) ei ωt + c.c. ,

(4.4.1)

2

 

 

 

 

 

 

A(x, y, z) =

1

E0(x, y, z) e2 π i Φ(x,y,z) .

 

(4.4.2)

2

 

 

 

 

 

 

 

The phase-conjugated wave exhibits the same wavefronts, however the sign of the phase Φ is inverted due to the inverted propagation direction. Thus, the phase-conjugated wave Epc can be

written as (4.4.3):

 

 

 

 

 

Epc(x, y, z, t) =

 

1

E0(x, y, z) e2 π i (f t−Φ(x,y,z)) + c.c. = Apc(x, y, z) ei ωt + c.c. ,

(4.4.3)

2

 

 

 

 

Apc(x, y, z) =

1

E0(x, y, z) e2 π i Φ(x,y,z) = A (x, y, z) .

(4.4.4)

2

 

 

 

 

 

As can be seen Apc equals the complex-conjugated A , which explains the term phase conjugation. From (4.4.1) and (4.4.3) we derive that the incident and phase-conjugated wave are also related to each other by

Ein(x, y, z, −t) = Epc(x, y, z, t) .

(4.4.5)

Thus, the phase-conjugate wave Epc propagates as if one would reverse the temporal evolution of the incident wave Ein . Therefore the term “time-reversed replica” is sometimes used to describe the phase-conjugate wave.

An ideal PCM also maintains the polarization state of an incident wave after phase conjugation. As an example, a probe wave that is Right-Handed Circularly Polarized (RHCP) will result in a RHCP-reflected wave after conjugation. This is in contrast to a conventional mirror, which reflects an incident RHCP field to yield a Left-Handed Circularly Polarized (LHCP) wave [82Pep].

One should realize that an ideal phase-conjugated wave exhibits the same frequency f as the incident wave and reveals the same polarization state. Often, real phase conjugators do not have these properties. However, if an PCM maintains the polarization state it is called a “vector phase conjugator ”.

The nonlinear optical process which comes closest to yielding an ideal phase-conjugate wave is the backward-going, degenerate four-wave mixing interaction. Other classes of interaction (e.g. stimulated e ects) result in nonideal conjugate waves due to frequency shifts, nonconjugated field polarization, etc. Although the application of stimulated e ects, especially Stimulated Brillouin Scattering (SBS), yields to nonideal phase-conjugate mirrors they are used the most to solve practical problems requiring phase conjugation (e.g. compensation of phase distortions in high average power laser systems [99Eic]).

4.4.3 Phase conjugation by degenerate four-wave mixing

Four-wave mixing can be understood as a real-time holographic process, which facilitates phase conjugation. If the frequencies of the incoming wave, the two additionally required pump waves, and the phase-conjugated or reflected wave are equal the process is called Degenerate Four-Wave Mixing (DFWM ).

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 245]

4.4 Phase conjugation

237

 

 

 

Pump wave P1 Pump wave P2

Signal wave

Phase-conjugate wave

Fig. 4.4.3. Setup for phase conjugation by four-wave mix-

ing.

 

 

In Fig. 4.4.3 the setup for phase conjugation by four-wave mixing is shown.

Interference of the incoming wave Ein(x, y, z, t) with the pump wave P1(x, y, z, t) results in a spatially periodic intensity pattern which modulates the absorption coe cient or refractive index of the optical material resulting in a dynamic or transient amplitude or phase grating. The other pump P2(x, y, z, t) is di racted at this grating producing the phase-conjugated wave. This corresponds to the conventional holographic process where the read-out wave is replaced by the second pump wave counterpropagating to the first pump or reference wave.

Recording of a hologram is the first step in phase conjugation and leads to a transmission function t in the hologram plane (variables will not be noted furthermore to simplify the readability):

t

|

P

1

+ E

in|

2

=

· · ·

=

P

1

|

2 + P

E

+ P E

in

+

E

2 .

(4.4.6)

 

 

 

 

 

|

 

1

in

1

|

 

in|

 

During the read-out the phase-conjugate wave can be generated. Therefore, the hologram is illuminated with a second pump wave P2 , propagating in the opposite direction to P1 . This is in contrast to standard holography. Since P2 precisely retraces the path of P1 in the opposite propagation direction, P2 equals P1 . This means, that the two pump beams should be phase-conjugated to each other, so that their spatial phases cancel and do not influence the phases of the reflected beam.

In the hologram plane we obtain a field strength distribution as follows:

P

2

t = P t

 

P

P

1

|

2 +

P

1

|

2 E

+ (P )2

E

in

+ P

E

in|

2 .

(4.4.7)

 

1

1 |

 

|

 

in

1

 

1 |

 

 

 

The second term |P1|2 Ein corresponds to the phase-conjugate wave of Ein . The other expressions lead to three additional waves which are not of interest here. They can be suppressed in thick nonlinear media in case of Bragg di raction.

Common dynamic grating materials for phase conjugation are:

photorefractive crystals (LiNbO3, BaTiO3, . . . ),

liquid crystals (molecular reorientation e ects),

laser crystals (spatial hole-burning, excited-state absorption),

saturable absorbers,

absorbing gases and liquids (thermal gratings),

semiconductors (Si, GaAs, . . . ).

The disadvantage of phase conjugation by four-wave mixing is the requirement of two additional pump waves for the nonlinear medium. However, this facilitates amplification of the phaseconjugate wave in the nonlinear medium at the same time. Vector phase conjugation is not achieved by this simple DFWM scheme, but requires polarization-dependant interactions.

4.4.4 Self-pumped phase conjugation

Self-pumped phase conjugation of continuous-wave laser beams in the lower power range (mW . . . W) can be realized in Four-Wave Mixing (FWM) loop arrangements using photorefractive media, see Sect. 4.4.6 for detailed discussion.

Landolt-B¨ornstein

New Series VIII/1A1


238

4.4.4 Self-pumped phase conjugation

[Ref. p. 245

 

 

 

Table 4.4.1. Brillouin gain coe cient g and phonon lifetime τ for di erent SBS media.

SBS medium

Brillouin gain coe cient g [cm/GW]

Phonon lifetime τ [ns]

 

 

 

SF6 (20 bar)

25

15

Xe (50 bar)

90

33

C2F6 (30 bar)

60

10

CS2

130

5.2

CCl4

6

0.6

Acetone

20

2.1

Quartz

2.4

5

 

 

 

For pulsed lasers, self-pumped phase conjugation is achieved by stimulated scattering. For practical application, stimulated Brillouin scattering [72Kai] in

gases (SF6, Xe, C2F6, CH4, N2, . . . ) under high pressure,

liquids (CS2, CCl4, acetone, freon, GeCl4, methanol, . . . ), and

solids (bulk quartz glass, glass fibers)

is used.

Table 4.4.1 shows the Brillouin gain coe cient g and the phonon lifetime τ for di erent gaseous, liquid, and solid-state SBS media.

A phase-conjugate mirror consists simply of a gas or liquid cell or a fiber piece. The incoming wave is focused into the material where an oppositely traveling wave is generated initially by spontaneous scattering. This wave interferes with the incoming wave and induces a sound wave or another type of phase grating reflecting the incoming beam similarly as a dielectric multilayer mirror. The induced density variations have the frequency of the initial sound wave, which is amplified therefore and reinforces the backscattering. A detailed discussion of stimulated Brillouin scattering is given in Sect. 4.3.3.2.

The amplification depends strongly on the extension of the interference area. Therefore the phase-conjugated backscattered part dominates, leading to an exponential rise of the reflected phase-conjugated signal. The wavefronts of the sound-wave grating match the wavefronts of the incoming beam. Any disturbance of the incident wavefront will result in a self-adapted mirror curvature with response times in the ns range.

For applications the “threshold”, reflectivity, and conjugation fidelity are the most important parameters that characterize the performance of a Brillouin-scattering phase-conjugate mirror. A sharply defined threshold does not exist for the nonlinear SBS process. However, after exceeding a certain input energy a steep increase of reflectivity can be observed. Often this is called the energy threshold of the phase-conjugate medium. For long pulses as compared to the phonon lifetime (typically several ns) the SBS is expected to become stationary. In this case the energy threshold can be substituted by a power threshold. Well above this threshold, the reflectivity is not stationary but exhibits statistical fluctuations because SBS starts from noise.

It is important to emphasize that the power and not the intensity determines the “threshold” in case of strongly monochromatic input waves. Slight focusing leads to lower intensity, but also to a longer Rayleigh length and a larger interaction area. Stronger focusing reduces the interaction length, but results in stronger refractive-index modulation. Both e ects compensate each other if the interaction length is not limited by the coherence length.

Practically, for most laser sources the coherence length is rather short. Here the interaction length should be short compared to the coherence length. This requires adequate focusing of the beam into the SBS medium. Focal length and scattering material have to be chosen suitable to achieve a high SBS reflectivity and a good reproduction of the wavefront. Side e ects in the material like absorption, optical breakdown, or other scattering processes have to be avoided. Figure 4.4.4

Landolt-B¨ornstein

New Series VIII/1A1