Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 870

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

226

4.3.3 Individual scattering processes

[Ref. p. 232

 

 

 

 

Table 4.3.1c continued.

 

 

 

 

 

 

 

Medium

Stokes shift

Excitation

Reference

 

ν0/c [cm1]

wavelength [nm]

 

Cesium vapor

14597

 

[84Har]

Chlorine

556

694

[72Car, 78Map]

Deuterium

2991

694

[67Blo]

Hydrogen

4160

694

[67Blo, 75Cha]

Hydrogenbromide (20 atm)

2558

694

[70Mac, 78Map]

Hydrogenchloride (35 atm)

2883

694

[70Mac, 78Map]

Methane (10 atm)

2917

 

[70Mac]

Nitrogen (55–100 atm)

2330

694

[70Mac, 75Cha]

N2O (50 atm)

774

694

[70Mac, 78Map]

NO

1877

694

[72Car]

Oxygen (50–100 atm)

1550

694

[70Mac]

SF6 (15–20 atm )

1551

694

[70Mac]

SF6 (18 atm)

775

694

[72Car]

 

 

 

 

Table 4.3.2. Gain factor and other parameters of stimulated Raman scattering.

(a) Liquids

Medium

Stokes shift

Scattering

Linewidth

Gain factor

Excitation

Ref.

 

ν0/c

coe cient

δν/c

gS

wavelength

 

 

[cm1]

N × dσ/d

[cm1]

[1012 m/W]

[nm]

 

 

 

[107 m1 sr1]

 

 

 

 

Acetone

2925

 

17.4

12

530

[69Col]

Benzene

992

 

2.2

28

694

[72Mai]

Bromobenzene

1000

15

1.9

15

694

[72Mai]

Carbondisulfide

655

75

0.50

240

694

[72Mai]

Chlorobenzene

1002

15

1.6

19

694

[72Mai]

Ethanol

2928

 

17.4

51

530

[69Col]

Isopropanol

2882

 

26.7

9.2

530

[69Col]

Methanol

2834

 

18.7

23

530

[69Col]

Methanol

2944

 

26.5

18

530

[69Col]

Nitrogen

2326

2.9

0.067

170

694

[72Mai]

Nitrobenzene

1345

64

6.6

21

694

[72Mai]

Oxygen

1552

4.8

0.117

140

694

[72Mai]

Tetrachloroethylene

447

 

 

17

598

[76Mai]

Toluene

1003

11

1.9

12

694

[72Mai]

1,1,1-Trichloroethane

2939

 

5.2

51

530

[69Col]

Water

3450

430

 

1.4

530

[69Col]

 

 

 

 

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1



Ref. p. 232]

 

4.3 Stimulated scattering

 

227

 

 

 

 

 

 

(b) Solids

 

 

 

 

 

 

 

 

 

 

 

Medium

Stokes shift

Linewidth

Gain factor

Excitation

Ref.

 

ν0/c

δν/c

gS

wavelength

 

 

[cm1]

[cm1]

[1012 m/W]

[nm]

 

Ba2NaNb5O15

650

 

67

694

[72Mai]

Calcite

1086

1.1

1.4

530

[69Col]

CuAlS2

314

 

21,000

514

[97Bai]

GaP

403

 

19,000

632

[97Bai]

6LiNbO3

256

 

180

694

[72Mai]

7LiNbO3

256

 

89

694

[72Mai]

6LiTaO3

600

 

43

694

[72Mai]

Quartz

467

 

0.15

527

[67Wig]

 

 

 

 

 

 

(c) Gases

Medium

Stokes shift

Di erential

Dephasing

Gain factor

Excitation

Ref.

 

ν0/c

scattering

time T2

gS

wavelength

 

 

[cm1]

cross section

[ps]

[1012 m/W]

[nm]

 

 

 

dσ/d

 

 

 

 

 

 

[1036 m2 sr1]

 

 

 

 

H2, Q(1)

4155

1.2

208

9.7

1064

[86Han]

H2, Q(1)

4155

79

208

27.6

532

[86Han]

D2, Q(2)

2987

2.0

150

3.7

1064

[86Han]

D2, Q(2)

2987

8.0

150

10

532

[86Han]

Methane, Q

2917

7.0

16

3.3

1064

[86Han]

Methane, Q

2917

270

16

8.6

532

[86Han]

 

 

 

 

 

 

 

4.3.3.2Stimulated Brillouin scattering (SBS) and stimulated thermal Brillouin scattering (STBS)

Stimulated Brillouin scattering was extensively studied in liquids, solids, and gases. In many substances it is the dominant process under stationary conditions and occurs generally in backward direction. The scattering originates from two coupling mechanisms between the electromagnetic field and the medium: electrostriction and absorption. In transparent media only electrostriction is relevant. In absorbing media the second contribution called Stimulated Thermal Brillouin Scattering (STBS) is caused by absorption-induced local temperature changes leading to propagating density waves. The frequency dependencies of the gain factors for the two mechanisms are di erent. The peak values of stimulated gain are given by:

ge

 

(∂ε/∂ρ)2

ω2 ρo

 

=

 

T

S

 

 

(4.3.14)

 

 

 

 

 

B

 

 

2 c3 nS v ΓB

 

 

 

 

 

for the electrostrictive contribution (superscript “e”), and by

 

ga

=

α (∂ε/∂ρ)T ωS βT

 

(4.3.15)

 

B

 

 

4 c nS Cp ΓB

 

 

 

 

 

for STBS. Here (∂ε/∂ρ)T is the change of the relative dielectric constant with mass density ρ at constant temperature T . ρo is the equilibrium density value. v denotes the sound velocity at

Landolt-B¨ornstein

New Series VIII/1A1


228

4.3.3 Individual scattering processes

[Ref. p. 232

 

 

 

frequency ωo = ωL − ωS (see (4.3.4) for backward scattering, θ = 180). The parameters in (4.3.15) are the absorption coe cient of the laser intensity α and the relative volume expansion coe cient βT . The half-width ΓB = π δν of the corresponding spontaneous Brillouin line that displays an approximately quadratic frequency dependence also enters the expressions above. For liquids one can write:

 

4

η S + Λ

1

1

+ η V

 

 

 

=

 

 

 

 

 

,

 

ΓB

3

CV

Cp

(4.3.16)

ωo2

 

 

 

2 ρo v2

 

 

 

 

 

 

 

 

where η S and η V, respectively, denote the shear and volume viscosity; the latter is to some extent frequency-dependent via relaxation phenomena. Λ is the thermal conductivity. CV and Cp are

the specific heat per unit mass at constant volume and pressure, respectively. The phonon lifetime τ of the involved acoustic phonons with circular frequency ωo is related to the linewidth by τ = T2/2 = 1/(2 ΓB) . The peak gain value gBa increases proportional to α and is of same order of magnitude as gBe for α ≈ 1 cm1 .

The total frequency-dependent gain factor for the (first-order) Stokes component of SBS in-

cluding STBS is given by

 

 

 

g(ω

) =

gBe ΓB2

 

gBa 2 ΓB (ωS − ωL + ωo)

.

(4.3.17)

(ωS − ωL + ωo)2 + ΓB2

 

S

 

(ωS − ωL + ωo)2 + ΓB2

 

The maximum contribution of STBS is red-shifted relative to the Brillouin line and occurs at ωS = ωL −ωo −ΓB . In the blue wing of the Brillouin Stokes line the mechanism produces stimulated loss. Equation (4.3.17) states that the Stokes shift observed in the stimulated Brillouin scattering of absorbing media in the generator or oscillator setup – occurring at the peak value of g(ωS) – is modified compared to the spontaneous Brillouin line.

A list of frequency shifts observed in SBS of transparent media is presented in Table 4.3.3 where values for the Brillouin linewidth δν and the gain parameters gBa and gBe are also compiled. The relaxation time T2 (= 1/π δν) in condensed matter is in the order of 109 s so that SBS is close to steady state for giant laser pulses with tp 108 s (if self-focusing is avoided), but is of transient character in the subnanosecond time domain.

4.3.3.3Stimulated Rayleigh scattering processes, SRLS, STRS, and SRWS

Three mechanisms can be distinguished:

1.Stimulated Rayleigh Line Scattering in transparent substances, SRLS, by electrostrictive coupling to non-propagating density changes,

2.Stimulated Thermal Rayleigh Scattering, STRS, by absorptive coupling similar to the STBS case, and

3.Stimulated Rayleigh Wing Scattering, SRWS, in liquids by orientational changes of anisotropic molecules.

The frequency shifts of the Stokes component of the first two cases are considerably smaller than for SBS. SRLS is di cult to observe because of the small gain factor and the relatively long relaxation time T2 108 s for backward scattering leading to transient scattering for nanosecond pulses.

Landolt-B¨ornstein

New Series VIII/1A1


Ref. p. 232]

4.3 Stimulated scattering

229

 

 

 

Table 4.3.3. Stimulated Brillouin scattering in backward direction: frequency shift, linewidth, and gain factor.

Medium

Stokes shift Linewidth

Gain

Gain factor

Gain factor

Ref.

 

ν0/c

δν

coe cient

gBe

gBe

 

 

[cm1]

[MHz]

gBa

(calculated)

(measured)

 

 

 

 

(calculated)

[cm / MW]

[cm / MW]

 

 

 

 

[cm2 / MW]

 

 

 

Acetic acid

0.152

 

 

 

 

[67Wig]

Acetone

0.154

180

0.022

0.017

0.020

[70Poh]

Aniline

0.259

 

 

 

 

[67Wig]

Benzaldehyde

0.224

 

 

 

 

[67Wig]

Benzene

0.211

 

0.024

0.024

0.018

[68Den]

Bromobenzene

0.188

 

 

 

 

[67Wig]

Carbondisulfide

0.194

75

0.213

0.197

0.068

[97Jo]

Carbontetrachloride

0.146

650

0.0134

0.0084

0.006

[68Den, 70Poh]

Chloroform

0.148

 

 

 

 

[67Wig]

Cyclohexane

0.180

 

 

0.007

0.0068

[68Den]

p-Dichlorobenzene

0.184

 

 

 

 

[67Wig]

Ethanol

0.152

 

0.010

0.012

 

[72Mai]

Fluorinert FC 72

 

 

 

 

0.006

[97Yos]

Fluorinert FC 75

 

 

 

 

0.005

[97Yos]

Glass BSC-2

0.866

 

 

 

 

[67Wig]

Glass DF-3

0.638

 

 

 

 

[67Wig]

Glycerol

0.386

 

 

 

 

[67Wig]

n-Hexane

 

220

 

0.027

0.026

[68Den, 70Poh]

InSb

 

 

 

 

 

[95Lim]

Methanol

0.142

 

0.013

0.013

0.013

[68Den, 70Poh]

Methylodide

0.166

 

 

 

 

[67Wig]

Nitrobenzene

0.228

 

 

 

 

[67Wig]

m-Nitrotoluene

0.229

 

 

 

 

[67Wig]

n-Nitrotoluene

0.217

 

 

 

 

[67Wig]

Octanol

0.194

 

 

 

 

[67Wig]

Pyridine

0.226

 

 

 

 

[67Wig]

Quartz

1.16

 

 

 

0.005

[89Agr]

Sulfurhexafluoride

 

 

 

 

0.0015

[93Fil, 97Jo]

(20 atm)

 

 

 

 

 

 

Tetrabromomethane

0.173

 

 

 

 

[67Wig]

Toluene

0.193

480

 

0.013

0.013

[68Den, 70Poh]

Water

0.197

 

0.0008

0.0066

0.0048

[68Den, 77Rys,

 

 

 

 

 

 

94Yos]

p-Xylene

0.199

 

 

 

 

[67Wig]

 

 

 

 

 

 

 

1. and 2. The peak value of the stimulated gain for SRLS is given by:

ge

=

(∂ε/∂ρ)T2 ωS ρo (γ − 1)

,

(4.3.18)

RL

 

4 c2 nS2 v2

 

 

 

 

where

γ = Cp/CV . It is interesting to notice that gRLe

does not depend on scattering angle

(ωS = ωL ). A finite optical absorption coe cient α of the medium gives rise to a second con-

tribution with peak value:

 

ga

=

α (∂ε/∂ρ)T ωS βT

.

(4.3.19)

 

RL

 

2 c nS Cp ΓRL

 

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1