Файл: Дойч. Структура Реальности.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 707

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Дэвид Дойч. Структура Реальности. Оглавление

Предисловие редакции.

Благодарности.

Предисловие.

Глава 1. Теория Всего.

Терминология.

Резюме.

Глава 2. Тени.

Терминология.

Резюме.

Глава 3. Решение задач.

Терминология.

Резюме.

Глава 4. Критерии реальности.

Терминология.

Резюме.

Глава 5. Виртуальная реальность.

Терминология.

Резюме.

Глава 6. Универсальность и пределы вычислений.

Принцип Тьюринга

Терминология.

Резюме.

Глава 7. Беседа о доказательстве (или «Дэвид и Крипто-индуктивист»).

Терминология.

Глава 8. Важность жизни.

Терминология.

Резюме.

Глава 9. Квантовые компьютеры.

Терминология.

Резюме.

Глава 10. Природа математики.

Терминология.

Резюме.

Глава 11. Время: первая квантовая концепция.

Терминология.

Резюме.

Глава 12. Путешествие во времени.

Терминология.

Резюме.

Глава 13. Четыре нити.

Терминология.

Резюме.

Глава 14. Конец Вселенной.

Библиография. Это должен прочитать каждый.

Для дальнейшего прочтения.

Принцип Тьюринга (для абстрактных компьютеров, имитиру­ющих физические объекты)

Существует абстрактный универсальный компьютер, репертуар которого включает любые вычисления, которые может осуществить любой физически возможный объект.

Тьюринг считал, что «универсальный компьютер», о котором идет речь, —это универсальная машина Тьюринга. Чтобы принять во вни­мание более широкий репертуар квантовых компьютеров, я сформу­лировал принцип в такой форме, которая точно не определяет, какой частный «абстрактный компьютер» выполняет вычисления.

Приведенным мной доказательством существования сред Кантго­уту я, в сущности, обязан Тьюрингу. Как я уже сказал, он не думал непосредственно о виртуальной реальности, но «среда, которую мож­но передать», относится к классу математических вопросов, ответ на которые можно вычислить. Эти вопросы вычислимы.Все остальные во­просы —вопросы, ответы на которые невозможно вычислить, называ­ютсяневычислимыми.Если вопрос невычислим, это не значит, что на него нет ответа или что этот ответ в каком-то смысле плохо определен или сомнителен. Напротив, это значит, что у этого вопроса определенно есть ответ. Дело просто в том, что физически, даже в принципе не су­ществует способа получить этот ответ (или точнее, поскольку человек всегда может высказать удачную, неподдающуюся проверке догадку, доказать, что это и есть ответ). Например,простые двойники - это два простых числа, разность которых равна 2,например, 3и 5или 11 и 13.Математики тщетно пытались ответить на вопрос, существует ли бесконечно много таких пар или их количество все же конечно. Неиз­вестно даже, вычислим ли этот вопрос. Предположим, что нет. Это все равно, что сказать, что ни один человек и ни один компьютер никогда не смогут создать доказательство существования конечного или беско­нечного количества простых двойников. Но даже в этом случае ответ на этот вопрос существует: можно сказать определенно, что есть либо наибольшая пара простых двойников, либо бесконечно большое коли­чество таких пар; другого варианта не существует. Вопрос остается четко определенным, несмотря на то, что, возможно, мы никогда не узнаем ответа.

Что касается виртуальной реальности: ни один физически возмож­ный генератор виртуальной реальности не сможет передать среду, в ко­торой ответы на невычислимые вопросы даются по запросу пользова­теля. Такие среды относятся к средам Кантгоуту. Верно и обратное: каждая среда Кантгоуту соответствует классу математических вопро­сов («что произошло бы далее в среде, определенной так-то и так-то?»), на которые физически невозможно дать ответ.


Несмотря на то, что невычислимых вопросов бесконечно больше, чем вычислимых, они относятся к разряду эзотерических. Это не слу­чайно. Так происходит потому, что разделы математики, которые мы склонны считать в меньшей степени эзотерическими, —это разделы. отражение которых мы видим в поведении физических объектов в зна­комых ситуациях. В таких случаях мы часто можем воспользоваться этими физическими объектами, чтобы ответить на вопросы о соответ­ствующих математических отношениях. Например, мы можем считать на пальцах, потому что физика пальцев естественным образом имити­рует арифметику целых чисел от нуля до десяти.

Вскоре была доказана идентичность репертуаров трех очень раз­ных абстрактных компьютеров, определенных Тьюрингом, Черчем и Постом. Таковыми же являются и репертуары всех абстрактных моделей математического вычисления, которые с тех пор предлагались. Это считается аргументом в поддержку гипотезы Черча-Тьюринга и универсальности универсальной машины Тьюринга. Однако, вычисли­тельная мощность абстрактныхмашин не имеет никакого отношения к тому, что вычислимо в реальности. Масштаб виртуальной реальнос­ти и ее расширенное применение для постижимости природы и других аспектов структуры реальности зависит от того, реализуемы ли необ­ходимые компьютеры физически. В частности, любой настоящий уни­версальный компьютер должен быть физически реализуем сам по себе. Это ведет к более определенному варианту принципа Тьюринга:

Принцип Тьюринга (для физических компьютеров, имитирую­щих друг друга)

Возможно построить универсальный компьютер: машину, которую можно запрограммировать для выполнения любого вычисления, которое может выполнить любой другой физический объект.

Следовательно, если бы универсальный компьютер управлял уни­версальным генератором изображений, то получившаяся в результате машина стала бы универсальным генератором виртуальной реальнос­ти. Другими словами, справедлив и следующий принцип:

Принцип Тьюринга (для генераторов виртуальной реальности, передающих друг друга)

Возможно построить генератор виртуальной реальности, реперту­ар которого включает репертуар каждого другого физически возможного генератора виртуальной реальности.

Далее, любую среду можно передать с помощью генератора вирту­альной реальности некоторогорода (например, всегда можно рассмат­ривать копию этой самой среды как генератор виртуальной реальности с очень маленьким репертуаром). Таким образом, из этого варианта принципа Тьюринга также следует, что любую физически возможную среду можно передать с помощью универсального генератора вирту­альной реальности. Следовательно, чтобы выразить стабильную самоподобность, которая существует в структуре реальности, охватываю­щей не только вычисления, но и все физические процессы, принцип Тьюринга можно сформулировать во всеобъемлющей форме:



Принцип Тьюринга

Возможно построить генератор виртуальной реальности, реперту­ар которого включает каждую физически возможную среду.

Это наиболее жизнестойкая форма принципа Тьюринга. Она не только говорит нам, что различные части реальности могут походить друг на друга. Она говорит нам. что отдельный физический объект, который можно построить раз и навсегда (не считая обслуживания и при необходимости поставки дополнительной памяти), с неограничен­ной точностью может выполнять задачу описания или имитирования любой другой части мультиверса. Набор всех вариантов поведения и реакций одного этого объекта в точности отображает все варианты по­ведения и реакции всех остальных физически возможных объектов и процессов.

Это просто род самоподобности, которая необходима, если мои на­дежды на то, что структура реальности должна быть действительно единой и понятной, оправданны. Если законы физики и их примени­мость к любому физическому объекту или процессу должны быть по­няты, должна существовать возможность их воплощения в другом фи­зическом объекте —объекте, который будет их знать. Также необходи­мо, чтобы процессы, способные создать такое знание, были физически возможны. Такие процессы называются наукой. Наука зависит от экс­периментальных проверок: физической передачи предсказаний закона и ее сравнения с реальностью (ее передачей). Она также зависит от объяснений, и для того, чтобы суметь передать их в виртуальной ре­альности, необходимы сами абстрактные законы, а не просто их предсказательное содержание. Это серьезный запрос, но реальность удов­летворяет его. То есть законы физики удовлетворяют его. Законы фи­зики, согласуясь с принципом Тьюринга, дают тем же самым законам физическую возможность стать физическими объектами. Таким обра­зом, можно сказать, что законы физики ручаются за свою собственную постижимость.

Поскольку построить универсальный генератор виртуальной ре­альности физически возможно, в некоторых вселенных он действитель­но должен бытьпостроен. Здесь я должен сделать предостережение. Как я объяснил в главе 3,мы можем нормально определить физически возможный процесс как процесс, который действительно происходит где-то в мультиверсе. Но, строго говоря, универсальный генератор вир­туальной реальности —это граничный случай, требующий для своего функционирования сколь угодно больших ресурсов. Поэтому, говоря «физически возможный», мы в действительности подразумеваем, что в мультиверсе существуют генераторы виртуальной реальности, репертуары которых сколь угодно близки к набору всех физически воз­можных сред. Подобным образом, поскольку законы физики можно пе­редать, где-то ихпередают.Таким образом, из принципа Тьюринга (более определенной его формы, которую я доказал) следует, что за­коны физики не просто ручаются за свою собственную постижимость в каком-то абстрактном смысле —постижимость абстрактными уче­ными, как это было. Их следствием является физическое существование где-то в мультиверсе категорий, которые понимают их сколь угодно хо­рошо. К этому следствию я вернусь в следующих главах.


Сейчас я возвращаюсь к вопросу, который задал в предыдущей гла­ве, а именно: правда ли то, что если бы наша передача в виртуальной реальности, основанная на неправильных законах физики, была един­ственным источником получения знаний, нам следовало бы ожидать изучения неправильных законов. Первое, что мне хотелось бы выде­лить, —это то, что виртуальная реальность, основанная на неправиль­ных законах, иестьнаш единственный источник получения знаний! Как я уже сказал, все наши внешние ощущения связаны с виртуаль­ной реальностью, созданной нашим мозгом. А поскольку наши концеп­ции и теории (будь они врожденные или приобретенные) никогда не совершенны, все наши передачи на самом деле неточны. То есть, они дают нам ощущение среды, которая значительно отличается от среды, в которой мы действительно находимся. Миражи и другие оптические иллюзии —тому примеры. Далее, мы ощущаем, что Земля под наши­ми ногами находится в состоянии покоя, несмотря на то, что в дейст­вительности она совершает быстрое и сложное движение. Кроме того, мы ощущаем отдельную вселенную и отдельный пример нашего созна­тельного «я», тогда как в реальности этого много. Но эти неточные и вводящие в заблуждение ощущения не доказывают ложность научного рассуждения. Напротив, такие недостатки являются отправной точкой.

Нам приходится решать задачи о физической реальности. Если ока­жется, что все это время мы просто изучали программирование кос­мического планетария, то это будет просто означать, что мы изучали меньшую часть реальности, чем нам казалось. Ну и что? Такое проис­ходило много раз в истории науки, когда наши горизонты расширялись за пределы Земли, включая солнечную систему, нашу галактику, дру­гие галактики, скопления галактик и т.д. и, конечно, параллельные все­ленные. Еще одно подобное расширение может произойти завтра; оно действительно может произойти в соответствии с одной из бесконеч­ного множества возможных теорий, а может и не произойти никогда. Логически мы должны согласиться с солипсизмом и родственными ему доктринами в том, что изучаемая нами реальность можетбыть не­представительной частью большей, недостижимой или непостижимой структуры. Но мое общее опровержение таких доктрин показывает, что нерационально основываться на возможности. Следуя Оккаму, мы при­мем эти теории тогда и только тогда, когда они обеспечат объяснения лучшие, чем объяснения их более простых конкурентов.

Однако, существует вопрос, который мы все еще можем задать. До­пустим, кого-либо заключили в небольшую, непредставительную часть нашей реальности, например, в универсальный генератор виртуальной реальности, запрограммированный по неправильным законам физики. Что могли бы узнать эти пленники о нашей внешней реальности? На первый взгляд, кажется невозможным, что они могли бы открыть хоть что-нибудь. Может показаться, что самое большее, что они могли бы открыть, —это законы управления, т.е. компьютерную программу, управляющую их заключением.