Файл: Пять нерешенных проблем науки.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 505

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наука ≠ техника

Научный метод в действии

Нерешенные проблемы

Более элементарные по сравнению с атоллами

Спасительные космические лучи

Четыре силы

Осколки частиц, или Трудное разделение

Вмешательство политики

Физика возвращается к повседневным заботам

Появление кварков

Теория наносит ответный удар: объединение

Стандартная модель

Проверка стандартной модели

Теневая сторона стандартной модели

Проблема происхождения массы, известная как проблема полей Хиггса

Нужна новая физика

Необходим новый язык?

Решение головоломки: как, кто, где и когда?

Становление химических систем

Предположения о происхождении жизни

Нынешняя жизнь: клеточные структуры

Отправления клетки

Предсолнце

Наше Солнце

Появление рнк

Рнк-мир

Альтернативы рнк-миру

Сложности

Решение головоломки: как, кто и почему?

Биология

E. Coli

Опероны е. Coli

Оперон днк — рнк — белки

От прокариот к эукариоталл

Модельные организмы

Физика — биология — химия

Секвенирование генома человека

Угроза патентования

Секвенирование дроблением

План на вторую половину игры

Последствия и бедствия

Решение головоломки: почему, как, кто и где, когда?

Глава пятая Геология

Погода на Земле

Воздух местного производства

Получение атмосферного газа

Потеря атмосферного газа

Получение или утрата атмосферного газа

Погода и климат: гипотезы (весьма добротные), прогнозы (не столь добротные)

Решение головоломки: как и где?

Астрономия

Содержимое Вселенной

Измерение межзвездных расстояний

Галактики: первые теории и наблюдения

Космологический вклад Эйнштейна

Чем крупнее телескопы, тем больше расстояния до звезд

Одна большая Галактика или многочисленные обособленные галактики

Вселенная галактик

Столкнувшись с неожиданным: ускорение Вселенной

В темноте рассуждать о темной энергии

Решение головоломки: где, когда, как и кто?

1. Антивещество

2. Ускорители

4. Внеземная жизнь

1. Какова скорость образования в нашей Галактике звезд, подходящих для создания пригодных для жизни планет ?

2. Какова доля таких звезд, имеющих планеты ?

3. Какова доля планет, обращающихся вокруг своих звезд в пределах, где возможно зарождение жизни ?

4. Какова доля благоприятно расположенных планет, где действительно зародилась жизнь?

5. Какова доля форм жизни, приведших к возникновению разума ?

6. Какова доля разумных форм жизни, способных создать технические средства для передачи поддающихся обнаружению сигналов?

7. В течение скольких лет разумная цивилизация передает в космос поддающиеся обнаружению сигналы?

5. Аминокислоты

6. Построение модели днк

7. Кодоны

8. Укладка белков

10. Парниковые газы

11. Земля: история недр

12. Теория хаоса

13 .Предсказание землетрясений

15. Труды Эйнштейна: помимо теории относительности

16. «Большой взрыв»

Глава 1. Видение науки

Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?

Глава 3. Химия. Какого рода химические реакции подтолкнули атомы к образованию первых живых существ?

Глава 4. Биология. Каково строение и предназначение протеома?

Глава 5. Геология. Возможен ли точный долговременный прогноз погоды?

Глава 6. Астрономия. Почему Вселенная расширяется со все большей скоростью?

АРТУР УИГГИНС, ЧАРЛЬЗ УИНН

ПЯТЬ

НЕРЕШЕННЫХ

ПРОБЛЕМ

НАУКИ

Рисунки Сидни Харриса

Уиггинс А., Уинн Ч.

THE FIVE BIGGEST UNSOLVED PROBLEMS IN SCIENCE

ARTHUR W. WIGGINS CHARLES M. WYNN

With Cartoon Commentary by Sidney Harris

John Wiley & Sons, Inc.

Книга рассказывает о крупнейших проблемах астрономии, физики, химии, биологии и геологии, над которыми сейчас работают ученые. Авторы рассматривают открытия, приведшие к этим проблемам, знакомят с работой по их решению, обсуждают новые теории, в том числе теории струн, хаоса, генома человека и укладки белков.

Предисловие

Мы, люди, ютимся на обломке скалы под названием «планета», обращающейся вокруг ядерного реактора под названием «звезда», которая входит в огромное собрание звезд под названием «Галактика», а та в свою очередь — часть скоплений галактик, составляющих Вселенную. Наше состояние, именуемое нами жизнью, присуще множеству иных организмов на этой планете, но, похоже, мы одни обладаем орудием ума для постижения Вселенной и всего, чем она располагает. Свои усилия по выяснению природы Вселенной мы подводим под понятие науки. Такое понимание дается нелегко, и путь к нему долог. Однако успехи налицо.

Данная книга поведает читателю о крупнейших нерешенных проблемах науки, над которыми работают сегодня ученые. При всем изобилии экспериментальных данных их оказывается недостаточно, чтобы подтвердить ту или иную гипотезу. Мы рассмотрим события и открытия, приведшие к этим проблемам, а затем ознакомим вас с тем, как сегодня их пытаются решить ученые, находящиеся на переднем крае науки. Сидни Харрис, лучший американский иллюстратор научных изданий, оживит наши рассуждения присущим его рисункам юмором, не только поясняя затрагиваемые идеи, но и высвечивая их совершенно по-новому.

Мы обсуждаем здесь также нерешенные проблемы в основных отраслях естествознания, руководствуясь в своем выборе степенью их значимости, трудности, широты охвата и масштабом последствий. Наряду с ними мы включили в книгу краткий обзор и некоторых других проблем в каждой из затронутых отраслей знания, а также «Список идей», где читатель найдет дополнительные сведения о подоплеке некоторых нерешенных проблем. Наконец, мы привели «Источники для углубленного изучения», где перечислены информационные ресурсы, призванные помочь больше узнать о заинтересовавших вас предметах.


Особой благодарности заслуживают Кейт Бредфорд, старший редактор издательства Wiley, первый подавший мысль о такой книге, и наш литературный агент Луиза Кетц за ее неизменные слова поддержки.

Глава первая

Видение науки

Ведь человеку образованному свойственно добиваться точности для каждого рода [предметов]1

в той степени, в какой это допускает природа предмета. Одинаково [нелепым] кажется и довольствоваться пространными рассуждениями математика, и требовать от ритора строгих доказательств.

Аристотель

Наука ≠ техника

Разве наука и техника не одно и то же? Нет, они различны.

Хотя техника, определяющая современную культуру, развивается благодаря постижению наукой Вселенной, техника и наука руководствуются разными побуждениями. Рассмотрим основные различия между наукой и техникой. Если занятия наукой вызваны желанием человека познать и понять Вселенную, то технические новшества — стремлением людей изменить условия своего существования, чтобы добыть себе пропитание, помочь другим, а нередко и совершить насилие ради личной выгоды.

Люди зачастую одновременно занимаются «чистой» и прикладной наукой, но в науке можно вести фундаментальные исследования без оглядки на конечный результат. Британский премьер-министр Уильям Гладстон заметил как-то Майклу Фарадею по поводу его основополагающих открытий, связавших воедино электричество и магнетизм: «Все это весьма занятно, но каков в этом прок?» Фарадей ответил: «Сэр, я не знаю, но однажды вы от этого выгадаете». Почти половину нынешнего богатства развитым странам принесла связь электричества с магнетизмом.

Прежде чем научные достижения станут достоянием техники, требуется принять во внимание дополнительные соображения: разработка какого устройства возможна, что допустимо построить (вопрос, по сути, относящийся к области этики). Этика же принадлежит к совершенно иной области умственной деятельности человека: гуманитарным наукам.

Основное различие между естествознанием и гуманитарными науками состоит в объективности. Естествознание стремится изучать поведение Вселенной по возможности объективно, тогда как перед гуманитарными науками такой цели или требования нет. Перефразируя слова ирландской писательницы XIX века Маргарет Волф Хангерфорд, можно сказать: «Красота [и истина, и справедливость, и благородство, и...] видится всеми по-разному».


Наука далеко не монолитна. Естественные науки заняты изучением как окружающей среды, так и самих людей, поскольку они функционально подобны иным формам жизни. А гуманитарные науки исследуют рациональное (эмоциональное) поведение людей и их установки, которые необходимы им для социального, политического и экономического взаимодействия. На рис. 1.1 графически представлены эти взаимосвязи.

Как бы ни способствовало такое стройное изложение пониманию существующих связей, действительность всегда оказывается значительно сложнее. Этика помогает определить, что исследовать, какие исследовательские методы, приемы использовать и какие эксперименты недопустимы ввиду таящейся в них угрозы благополучию людей. Политэкономия и политология также играют огромную роль, поскольку наука может изучать лишь то, что культура склонна поощрять как орудия производства, рабочую силу или что-то, политически приемлемое.

Механизм работы науки

Успех науки в изучении Вселенной складывается из наблюдений и выдвижения идей. Такого рода взаимообмен именуют научным методом (рис. 1.2).

В ходе наблюдения то или иное явление воспринимается органами чувств при помощи приборов или без них. Если в естествознании наблюдения ведутся за множеством подобных предметов (например, атомов углерода), то науки о человеке имеют дело с меньшим числом различных субъектов (например, людей, пусть даже однояйцевых близнецов).

После сбора данных наш ум, стремясь их упорядочить, начинает строить образы или объяснения. В этом и заключается работа человеческой мысли. Данный этап именуют этапом выдвижения гипотезы. Построение общей гипотезы на основе полученных наблюдений ведется посредством индуктивного умозаключения, которое содержит обобщение и поэтому считается самым ненадежным видом умозаключения. И как бы ни пытались искусственно строить выводы, в рамках научного метода подобного рода деятельность ограничена, поскольку на последующих этапах гипотеза сталкивается с действительностью.

Зачастую гипотеза целиком или отчасти формулируется на языке, отличающемся от обиходной речи, языке математики. Для приобретения математических навыков требуется приложить большие усилия, иначе несведущим в математике людям при объяснении научных гипотез понадобится перевод математических понятий на повседневный язык. К сожалению, при этом смысл гипотезы может существенно пострадать.


После построения гипотезу можно использовать для предсказания некоторых событий, которые должны произойти, если гипотеза верна. Такое предсказание выводится из гипотезы посредством дедуктивного умозаключения. Например, второй закон Ньютона гласит, что F = та. Если т равно 3 единицам массы, а а — 5 единицам ускорения, то F должна равняться 15 единицам силы. Выполнение математических расчетов на данном этапе могут взять на себя вычислительные машины, работающие на основе дедуктивного метода.

Следующий этап — проведение опыта, чтобы выяснить, подтверждается ли предсказание, сделанное на предыдущем этапе. Некоторые опыты провести довольно просто, но чаще — крайне затруднительно. Даже изготовив сложное и дорогостоящее научное оборудование для получения весьма ценных данных, нередко бывает нелегко найти деньги, а затем запастись терпением, необходимым для обработки и осмысления огромного массива этих данных. Естествознание обладает преимуществом: здесь можно обособить изучаемый предмет, тогда как наукам о человеке и обществе приходится иметь дело с многочисленными переменными, зависящими от различных взглядов (пристрастий) многих людей.

После завершения опытов их результаты сверяются с предсказанием. Поскольку гипотеза носит общий, а экспериментальные данные — частный характер, то результат, когда опыт согласуется с предсказанием, не доказывает гипотезу, а лишь подтверждает ее. Однако если исход опыта не согласуется с предсказанием, определенная сторона гипотезы оказывается ложной. Эта черта научного метода, именуемая фальсифицируемостью (опровергаемостью), накладывает на гипотезы определенное жесткое требование. Как выразился Альберт Эйнштейн, «никаким количеством экспериментов нельзя доказать теорию; но достаточно одного эксперимента, чтобы ее опровергнуть».

Оказавшуюся ложной гипотезу необходимо каким-то образом пересмотреть, т. е. слегка изменить, основательно переработать или же вовсе отбросить. Крайне трудно бывает решить, какие изменения здесь уместны. Пересмотренным гипотезам предстоит снова проделать тот же путь, и либо они устоят, либо от них откажутся в ходе дальнейших сопоставлений предсказания с опытом.

Другая сторона научного метода, не позволяющая сбиться с пути, — воспроизведение. Любой наблюдатель с соответствующей выучкой и подобающим оснащением должен суметь повторить опыты или предсказания и получить сравнимые результаты. Иначе говоря, науке свойственны постоянные перепроверки. Например, коллектив ученых из Национальной лаборатории им. Лоуренса Калифорнийского университета в Беркли2 пытался получить новый химический элемент, обстреливая свинцовую мишень мощным лучом ионов криптона и затем изучая полученные вещества. В 1999 году ученые объявили о синтезе элемента с порядковым номером 118.


Синтез нового элемента — это всегда важное событие. В данном случае его синтез мог подтвердить бытовавшие представления о стабильности тяжелых элементов. Однако ученые других лабораторий Общества по изучению тяжелых ионов (Дармштадт, Германия), Большого государственного ускорителя тяжелых ионов Кайенского университета (Франция) и Лаборатория атомной физики Физико-химического института Рикэн (Япония) — не смогли повторить синтез элемента 118. Расширенный коллектив лаборатории в Беркли повторил опыт, но ему также не удалось воспроизвести полученные ранее результаты. В Беркли перепроверили исходные экспериментальные данные посредством программы с видоизмененным кодом и не сумели подтвердить наличия элемента 118. Пришлось отзывать свою заявку. Данный случай свидетельствует, что научный поиск бесконечен.

Порой наряду с опытами перепроверяются и гипотезы. В феврале 2001 года Брукхэйвенская национальная лаборатория в Нью-Йорке сообщила об опыте, в котором магнитный момент мюона (подобно электрону отрицательно заряженной частицы, но значительно более тяжелой) слегка превышает величину, предопределенную стандартной моделью физики элементарных частиц (подробнее об этой модели см. гл. 2). А поскольку предположения стандартной модели о многих иных свойствах частиц очень хорошо согласовывались с опытными данными, такое расхождение по поводу величины магнитного момента мюона разрушало основу стандартной модели.

Предсказание магнитного момента у мюона стало следствием сложных и долгих расчетов, независимо проведенных учеными в Японии и Нью-Йорке в 1995 году. В ноябре 2001 года эти расчеты повторили французские физики, которые обнаружили ошибочный отрицательный знак у одного из членов уравнения и разместили свои результаты в Интернете. В итоге Брукхэйвенская группа перепроверила собственные вычисления, признала ошибку и опубликовала исправленные результаты. В итоге удалось сократить расхождение между предсказанием и опытными данными. Стандартной модели вновь предстоит выдержать испытания, которые ей готовит непрекращающийся научный поиск.