Файл: Дойч. Структура Реальности.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 723

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Дэвид Дойч. Структура Реальности. Оглавление

Предисловие редакции.

Благодарности.

Предисловие.

Глава 1. Теория Всего.

Терминология.

Резюме.

Глава 2. Тени.

Терминология.

Резюме.

Глава 3. Решение задач.

Терминология.

Резюме.

Глава 4. Критерии реальности.

Терминология.

Резюме.

Глава 5. Виртуальная реальность.

Терминология.

Резюме.

Глава 6. Универсальность и пределы вычислений.

Принцип Тьюринга

Терминология.

Резюме.

Глава 7. Беседа о доказательстве (или «Дэвид и Крипто-индуктивист»).

Терминология.

Глава 8. Важность жизни.

Терминология.

Резюме.

Глава 9. Квантовые компьютеры.

Терминология.

Резюме.

Глава 10. Природа математики.

Терминология.

Резюме.

Глава 11. Время: первая квантовая концепция.

Терминология.

Резюме.

Глава 12. Путешествие во времени.

Терминология.

Резюме.

Глава 13. Четыре нити.

Терминология.

Резюме.

Глава 14. Конец Вселенной.

Библиография. Это должен прочитать каждый.

Для дальнейшего прочтения.

В действительности вспомогательное квантовое аппаратное обес­печение тоже было бы компьютером. Например, интерферометр мог бы действовать, как подобный прибор, и. как любой другой физичес­кий объект, его можно было бы считать компьютером. Сегодня мы на­звали бы его специализированным квантовым компьютером.Мы «про­граммируем» его, устанавливая зеркала так, чтобы создать определен­ную геометрию, и затем направляем один фотон на первое зеркало. В эксперименте с неслучайной интерференцией фотон всегда будет по­являться в одном конкретном направлении, определяемом установкой зеркал, и мы можем интерпретировать это направление как указываю­щее результат вычисления. В более сложном эксперименте с нескольки­ми взаимодействующими частицами такое вычисление запросто могло бы, как я уже объяснил, стать «труднообрабатываемым». Но посколь­ку мы смогли получить его результаты, просто проведя эксперимент, значит, его все-таки нельзя назвать действительно труднообрабатыва­емым. Нам теперь следует быть более осторожными в вопросах тер­минологии. Очевидно, что существуют вычислительные задачи, кото­рые «с трудом поддаются обработке», если мы пытаемся решить их с помощью любого существующего компьютера, но которые перешли бы в разряд легко обрабатываемых, если бы в качестве специализиро­ванных компьютеров мы использовали квантово-механические объек­ты. (Обратите внимание, что возможность использования квантовых явлений для выполнения вычислений с помощью такого метода обу­словлена тем, что эти явления не подвержены хаосу. Если бы резуль­тат вычислений был функцией, чрезмерно чувствительной к начально­му состоянию, «запрограммировать» такое устройство, установив его в подходящее начальное состояние, было бы непосильно сложной зада­чей).

Использование вспомогательного квантового устройства таким об­разом можно было бы посчитать надувательством, так как очевидно, что любуюсреду гораздо проще передать, имея доступ к ее запасной копии для проведения измерений во время передачи! Однако Фейнман выдвинул гипотезу, что нет необходимости в использовании точной ко­пии передаваемой среды: что можно найти вспомогательное устройство с гораздо более простой конструкцией, но интерференционные свойства которого, тем не менее, будут аналогичны свойствам передаваемой сре­ды. Оставшуюся часть передачи способен осуществить обычный ком­пьютер, работающий аналогичным образом между вспомогательным устройством и передаваемой средой. Фейнман ожидал, что эта зада­ча будет легкообрабатываемой. Более того, он предполагал, как ока­залось, правильно, что все квантово-механические свойства любой пе­редаваемой среды можно смоделировать с помощью вспомогательных устройств конкретного вида, который он точно определил (а именно, совокупности вращающихся атомов, каждый из которых взаимодейст­вует со своими соседями). Он назвал весь класс таких устройствуни­версальным квантовым имитатором.


Однако этот имитатор не был отдельной машиной, какой он должен былбы быть, чтобы называться универсальным компьютером. Взаимодействия, которым пришлось бы подвергнуться атомам имитатора, нельзя было установить однажды и навсегда, как в универсальном ком­пьютере, их нужно было переустанавливать для каждой передаваемой среды. Однако смысл универсальности в том, что должно быть возмож­ным запрограммировать отдельную машину, точно определенную раз и навсегда, для выполнения любого возможного вычисления или пере­дачи любой возможной среды. В 1985году я доказал, что в квантовой физике существуетуниверсальный квантовый компьютер.Это доказа­тельство было абсолютно прямым. Все, что мне пришлось сделать, это скопировать устройства Тьюринга, но для определения лежащей в их основе физики воспользоваться не классической механикой, которую Неявно принимал Тьюринг, а квантовой теорией. Универсальный кван­товый компьютер может выполнить любое вычисление, которое может выполнить любой другой квантовый компьютер (или любой компьютер типа машины Тьюринга), а также он может передать любую конечную физически возможную среду в виртуальной реальности. Более того, С тех пор было показано, что время и остальные ресурсы, которые ему понадобятся для осуществления всего этого, не будут увеличиваться экспоненциально с ростом размеров или числа деталей передаваемой среды, так что важные вычисления будут легкообрабатываемы в соот­ветствии с нормами теории сложности.

Классическая теория вычисления, которая в течение полувека оставалась неоспоримым основанием вычисления, сейчас устарела, пре­вратившись разве что, как и остальная классическая физика, в схему аппроксимации. Сейчас такойтеорией вычисления является квантовая теория вычисления. Я сказал, что Тьюринг в своем устройстве неявно использовал «классическую механику». Но, оценив прошедшие события, сейчас мы можем увидеть, что даже классическая теория вычисления не полностью соответствовала классической физике и содержала серь­езные предзнаменования квантовой теории. Совсем не совпадение, что словобит,означающее наименьшее возможное количество информа­ции, которым способен управлять компьютер, в сущности значит то же самое, что иквант,дискретный компонент. Дискретные перемен­ные (переменные, которые не могут принимать непрерывный диапа­зон значений) чужды классической физике. Например, если переменная имеет только два возможных значения, скажем, 0и 1,как она вообще попадает из 0в 1?(Я задавал этот вопрос в главе 2).В классической физике ей пришлось бы переместиться из одного значения в другое с пе­рерывом, что несовместимо с работой сил и движений в классической механике. В квантовой физике нет необходимости в прерывном измене­нии —даже несмотря на то, что все измеримые величины дискретны. Это происходит следующим образом.


Для начала давайте представим несколько параллельных вселен­ных, сложенных подобно колоде карт, причем вся колода представля­ет собой совокупность вселенных. (Такая модель, в которой вселен­ные располагаются последовательно, весьма преуменьшает сложность мультиверса, но она вполне достаточна, чтобы проиллюстрировать то, о чем я говорю). Теперь давайте изменим эту модель, чтобы учесть тот факт, что мультиверс —это не дискретный набор вселенных, а конти­нуум, и то, что не все вселенные различны. В действительности, для каждой вселенной, которая там присутствует, также существует конти­нуум идентичных вселенных, содержащий определенную крошечную, но отличную от нуля долю мультиверса. В нашей модели эту долю можно представить через толщину карты, причем каждая карта те­перь представляет все вселенные данного типа. Однако, в отличие от толщины карты, доля каждого типа вселенных изменяется со време­нем по квантово-механическим законам движения. Следовательно, доля вселенных, обладающих данным свойством, тоже изменяется и изменя­ется непрерывно. В случае с дискретной переменной, которая изменя­ется от 0 до 1, допустим, что эта переменная принимает значение 0 во всех вселенных до начала изменения, а после изменения она принима­ет значение 1 во всех вселенных. Во время изменения доля вселенных, в которых значение равно 0, равномерно уменьшается от 100% до нуля, а доля вселенных, в которых это значение равно 1, соответственно рас­тет от нуля до 100%. На рисунке 9.4 показана точка зрения мультиверса на подобное изменение.

Рис. 9.4. Перспектива мультиверса на неприрывное изменение бита от 0 до 1

Из рисунка 9.4может показаться, что хотя переход от 0к 1объек­тивно непрерывен с перспективы мультиверса, он остается субъектив­но прерывным с перспективы любой отдельной вселенной —представ­ленной, скажем, горизонтальной линией, доходящей до середины рисун­ка 9.4.Однако это всего лишь ограничение диаграммы, а не реальная характеристика того, что происходит на самом деле. Хотя диаграмма выглядит так, словно в каждое мгновение существует конкретная все­ленная, которая «только что изменилась» от 0до 1,потому что она только что «пересекла границу», на самом деле это не так. Так быть не может, потому что такая вселенная строго идентична любой другой вселенной, в которой бит в данный момент имеет значение 1.Поэто­му, если бы жители одной из них испытывали прерывное изменение, То жители всех других испытывали бы то же самое. Значит, ни одна из них не может иметь такой опыт. Обратите также внимание, что, как я объясню в главе 11,идея о чем-то, чтодвижетсячерез диаграм­му, подобную рисунку 9.4,на которой уже представлено время, просто ошибочна. В каждое мгновение бит имеет значение 1в определенной доле вселенных и 0 —в другой. Все эти вселенные в каждый момент времени уже показаны на рисунке 9.4.Они никуда не движутся!


Еще один показатель неявного присутствия квантовой физики в классическом вычислении —это зависимость всех вариантов прак­тической реализации компьютеров типа машины Тьюринга от таких вещей как твердая материя или намагниченные материалы, которые не могли бы существовать в отсутствие квантово-механических эффек­тов. Например, любое твердое тело состоит из совокупности атомов, состоящих из электрически заряженных частиц (электроны и прото­ны в ядре). Но из-за классического хаоса ни одна совокупность заря­женных частиц не могла бы оставаться устойчивой при классических законах движения. Положительно и отрицательно заряженные части­цы просто вылетали бы со своего места, сталкиваясь друг с другом, и конструкция распалась бы. Только сильная квантовая интерферен­ция между различными траекториями движения заряженных частиц в параллельных вселенных предотвращает такие катастрофы и делает возможным существование твердой материи.

Создание универсального квантового компьютера действительно выходит за рамки современной технологии. Как я уже сказал, что­бы обнаружить явление интерференции, нужно вызвать соответству­ющее взаимодействие всехпеременных, которые были отличными во вселенных, вступивших в интерференцию. Чем больше взаимодейст­вующих частиц, тем сложнее спровоцировать взаимодействие, кото­рое продемонстрировало бы интерференцию, то есть результат вычис­ления. Среди множества технических сложностей работы на уровне одного атома или электрона одна из важнейших состоит в огражде­нии среды от воздействия различных интерферирующих субвычисле­ний. Поскольку, когда группа атомов подвергается явлению интерфе­ренции, причем эти атомы дифференцированно воздействуют на дру­гие атомы этой среды, то интерференцию уже невозможно обнару­жить с помощью измерений только исходной группы, и эта группа уже не выполняет какое бы то ни было полезное квантовое вычис­ление. Это называетсядекогерентностью.Следует добавить, что эту проблему часто представляют в ложном свете: нам говорят, что «кван­товая интерференция —очень чувствительный процесс, и его следует ограждать от любых внешних воздействий». Но это не так. Внешние воздействия способны вызвать малейшие несовершенства, но именно эффект квантового вычисления внешнего мира вызывает декогерентность.

Таким образом, ставка делается на создание субмикроскопических систем, в которых переменные, несущие информацию, взаимодейству­ют друг с другом, но оказывают на свою среду возможно меньшее вли­яние. Другое новое упрощение, уникальное для квантовой теории вы­числения, частично компенсирует сложности, вызываемые декогерент­ностью. Оказывается, что в отличие от классического вычисления, где необходимо разрабатывать точно определенные классические логичес­кие элементы, как-то И, илии НЕ, при квантовом вычислении точная форма взаимодействий вряд ли имеет значение. В сущности, любую систему взаимодействующих битов атомного масштаба, если она не декогерирует, можно приспособить для выполнения полезных квантовых вычислений.


Известны интерференционные явления, включающие огромные ко­личества частиц, например, суперпроводимость или супертекучесть, но кажется, что ни одно из них невозможно использовать для выпол­нения хоть сколь-нибудь интересных вычислений. Во время написания книги в лаборатории можно было без труда выполнить только одно­битовые квантовые вычисления. Однако, экспериментаторы уверены, что в течение нескольких последующих лет будут созданы двух- и бо­лее битовые квантовые логические элементы(квантовые эквивален­ты классических логических элементов). Это основные составляющие квантовых компьютеров. Некоторые физики, особенно Рольф Ландауер из Исследовательского ЦентраIBM, настроены пессимистично отно­сительно перспектив будущих достижений. Они полагают, что декогерентность никогда не будет сведена до того уровня, где можно будет выполнить больше, чем несколько последовательных этапов квантового вычисления. Большинство исследователей из этой области настроены гораздо более оптимистично (хотя возможно, это связано с тем, что над квантовым вычислением решаются работать только очень большие оп­тимисты!). Уже были построены некоторые специализированные кван­товые компьютеры (смотри ниже), и лично я думаю, что появление более сложных квантовых компьютеров —скорее дело нескольких лет, чем десятилетий. Что касается универсального квантового компьюте­ра, то я считаю, что его создание —это тоже только дело времени, хотя мне не хотелось бы предсказывать, сколько времени на это уйдет: десятилетия или века.

Тот факт, что репертуар универсального квантового компьюте­ра содержит среды, передача которых является труднообрабатываемой для классического вычисления, говорит о том, что новые классы чис­то математических вычислений тоже должны стать легкообрабатыва­емыми на этом компьютере. Как сказал Галилео, законы физики выра­жаются на языке математики, а передача среды эквивалентна оценке определенных математических функций. Действительно, в настоящее время обнаружено множество математических задач, которые можно было бы эффективно решить с помощью квантового вычисления, так как для всех известных классических методов они являются трудно­обрабатываемыми. Наиболее эффектной из этих задач является задача разложения на множители больших чисел. В 1994году Питер Шор, ра­ботающий вBellLaboratories, открыл метод, известный какалгоритм Шора.(Пока эта книга корректировалась, были открыты другие эф­фектные квантовые алгоритмы, включаяалгоритм Гроверадля очень быстрого поиска длинных списков).