ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.07.2024

Просмотров: 22

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

§ 46. Поверхности второго порядка.

Эллипсоидом называется поверхность, которая в некоторой системе декартовых прямоугольных координат определяется уравнением

(1)

Уравнение (1) называется каноническим уравнением эллипсоида. Величины а, b, с суть полуоси эллипсоида (черт. 47). Если все они различны, эллип­соид называется трёхосным; в случае, когда какие-нибудь две из них одина­ковы, эллипсоид является поверхностью вращения. Если, например, а = b, то осью вращения будет Оz. При а = b < с эллипсоид вращения назы­вается вытянутым, при а = b > с — сжатым. В случае, когда а = b = с, эллипсоид представляет собой сферу. Гиперболоидами называются по­верхности, которые в некоторой си­стеме декартовых прямоугольных ко­ординат определяются уравнениями:

Гиперболоид, определяемый уравне-нием (2), называется однополостным (черт. 48); гиперболоид, определяемый уравнением (3), — двухполостным (черт. 49); уравнения (2) и (3) называются каноническими уравнениями соот-ветствующих гиперболоидов. Величины а, b, с называются полуосями гиперболоида. В случае однополостного гиперболоида, заданного уравне-нием (2), только первые из них (а и b) показаны на черт. 48. В случае двухполостного гипербо-лоида, заданного уравнением (3), одна из них (именно, с) показана на черт. 49. Гиперболоиды, определяемые уравне­ниями (2) и (3), при а = 6 являются поверхностями вращения.

Параболоидами называются поверх-ности, которые в некоторой системе декартовых прямоугольных координат определяются уравнениями:

(1)

(2)

где р и q — положительные числа, называемые параметрами параболоида. Параболоид, определяемый уравнением (4), называется эллиптическим (черт. 50); параболоид, определяемый уравнением (5), — гиперболическим (черт. 51). Уравнения (4) и (5) называют каноническими уравнениями соответствующих

параболоидов. В случае, когда р = q, параболоид, определяемый уравнением (4), является поверхностью вращения (вокруг Ог).


Рассмотрим теперь преобразование пространства, которое называется равномерным сжатием (или равномерным растяжением).

Выберем какую-нибудь плоскость; обозначим её буквой α. Зададим, кроме того, некоторое положительное число q. Пусть М — произвольная

точка пространства, не лежащая на плоскости α, М0основание перпенди­куляра, опущенного на плоскость α из точки М. Переместим точку М по прямой ММ0 в новое положение М' так, чтобы имело место равенство

М0М' = qM0М

и чтобы после перемещения точка осталась с той же стороны от плоскости α, где она была первоначально (черт. 52). Точно так же мы поступим со всеми точками пространства, не лежащими на плоскости α; точки, которые расположены на плоскости α, оставим на своих местах. Таким образом, все точки пространства, за исключением тех, что лежат на пло­скости α, переместятся; при этом расстояние каждой точки от плоскости α изменится в не­которое определённое число раз, общее для всех точек. Описываемое сейчас перемещение точек пространства называется его равномерным сжатием к плоскости α; число q носит на­звание коэффициента сжатия. q

Черт. 52.

Пусть дана некоторая поверхность F; при равномерном сжатии пространства точ­ки, которые её составляют, переместятся и в новых положениях составят поверхность F'. Будем говорить, что поверхность F' получена из F в резуль­тате равномерного сжатия пространства. Оказывается, что многие поверх­ности второго порядка (все, кроме гиперболического параболоида) можно получить в результате равномерного сжатия из поверхностей вращения.

П р и м е р. Доказать, что произвольный трёхосный эллипсоид

может быть получен из сферы x2 + y2 + z2 = a2 , в результате двух последовательных равномерных сжатий пространства к координатным плоскостям: к плоскости Оху с коэффициентом сжатия q1=и к плоскости Охя с коэффициентом сжатия q2 = .


Доказательство. Пусть производится равномерное сжатие пространства к плоскости Оху с коэффициентом q1 = и пусть М'(х'; у'; z') — точка, в которую переходит при этом точка М (х; у; z). Выразим координаты х', у', z' точки М' через координаты х, у, z точки М'. Так как прямая ММ' перпендикулярна к плоскости Оху, то х'=х, у' = у. С другой стороны, так как расстояние от точки М' до плоскости Оху равно расстоянию от точки М до этой плоскости, помноженному на число

q1 = , то z' = z. Таким образом, мы получаем искомые выражения: х'=x, y'=y, z'=z или x= х', y= y' , z=z ',

Предположим, что М (х; у; г) — произвольная точка сферы

х2 + у2 + z2 = а2.

Заменим здесь х, у, z их выражениями (7); мы получим: x2+y2 + = а2, откуда

Следовательно, точка М'( x'; у'; z') лежит на эллипсоиде вращения. Анало­гично, мы должны осуществить сжатие пространства к плоскости Охг по формулам:

x= х'', y= y'', x= х', z=z'',

тогда получим трёхосный эллипсоид и именно тот, уравнение которого дано в условии задачи.

Отметим ещё, что однополостный гиперболоид и гиперболический пара-болоид,_суть линейчатые поверхности, т. е. они состоят из прямых; эти пря­мые называются прямолинейными образующими указанных поверхностей.

Однополостный гиперболоид

имеет две системы прямолинейных образующих, которые определяются урав­нениями:

где α и β — некоторые числа, не равные одновременно нулю. Гиперболиче­ский параболоид


также имеет две системы прямолинейных образующих, которые определяются уравнениями:

Конической поверхностью, или конусом, называется поверхность, кото­рая описывается движущейся прямой (образующей) при условии, что эта прямая проходит через постоянную точку S и пересекает некоторую опре­делённую линию L. Точка S называется вершиной конуса; линия L — напра­вляющей.

Цилиндрической поверхностью, или цилиндром, называется поверхность, которая описывается движущейся прямой (образующей) при условии, что эта прямая имеет постоянное направление и пересекает некоторую опреде­лённую линию L (направляющую).

1153. Установить, что плоскость х — 2 = 0 пересекает эллип­соид

по эллипсу; найти его полуоси и вершины.

1154. Установить, что плоскость z + 1 = 0 пересекает одно-полостный гиперболоид

по гиперболе; найти её полуоси и вершины.

1155. Установить, что плоскость _у + 6 = 0 пересекает гипер­болический параболоид

по параболе; найти ей параметр и вершину.

1156. Найти уравнения проекций на координатные плоскости сечения эллиптического параболоида

y2+z2 = x

плоскостью

х + 2у —z = 0.

1157. Установить, какая линия является сечением эллипсоида

плоскостью

2х —Зу + 4z —11=0,

и найти её центр.

1158. Установить, какая линия являетса, сечением гиперболиче­ского параболоида

плоскостью

Зх—Зу + 4z + 2 = 0,

и найти её центр.

1159. Установить, какие линии определяются следующими урав­нениями:

1) 2)


3)

и найти центр каждой из них.

1160. Установить, при каких значениях т плоскость x+ mz—1=0 пересекает двухполостный гиперболоид

x 2+ у2 — z2 = 1

а) по эллипсу, б) по гиперболе.

1161. Установить, при каких значениях т плоскость х + my 2 = 0 пересекает эллиптический параболоид

а) по эллипсу, б) по параболе.

1162. Доказать, что эллиптический параболоид

имеет одну общую точку с плоскостью

2х — 2у — z — 10 = 0,

и найти её координаты.

1163. Доказать, что двухполостный гиперболоид

имеет одну общую точку с плоскостью

5х + 2z + 5 = 0,

и найти её координаты»

1164. Доказать, что эллипсоид

имеет одну общую точку с плоскостью

4х 3у + 12z 54 = 0,

и найти её координаты.

1165. Определить, при каком значении т плоскость

х 2z + m = 0

касается эллипсоида

1166. Составить уравнение плоскости, перпендикулярной к вектору

n ={2; 1; 2} и касающейся эллиптического параболоида

1167. Провести касательные плоскости к эллипсоиду

4х2 + 16у2 + 8z2 = 1

параллельно плоскости

x 2у + 2z + 17 = 0;

вычислить расстояние между найденными плоскостями.

1168. Коэффициент равномерного сжатия пространства к пло­скости Oyz равен . Составить уравнение поверхности, в которую при таком сжатии преобразуется сфера

x2 + y2 + z2 = 25.

1169. Составить уравнение поверхности, в которую преобразуется

эллипсоид