Файл: Прямоугольные треугольники выполнила ученица 7я класса.pptx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 25.10.2023
Просмотров: 62
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК- ЧТО ЭТО?
Прямоуго́льный треуго́льник — это треугольник, в котором один угол прямой (то есть 90 градусов).
Далее из второго признака равенства треугольников следует:
Тест прямоугольный треугольник
Верно ли, что в прямоугольном треугольникесумма катетов больше гипотенузы?
ПРЯМОУГОЛЬНЫЕ ТРЕУГОЛЬНИКИ
Выполнила ученица 7я класса
Хохолкова Ольга
ЗАДАЧИ
- Узнать что такое прямоугольный треугольник
- Какие есть свойства прямоугольных треугольников ( свойство+доказательство)
- Какими бывают признаки прямоугольных треугольников
- Прорешать задачи и ответить на вопросы
ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК- ЧТО ЭТО?
Прямоуго́льный треуго́льник — это треугольник, в котором один угол прямой (то есть 90 градусов).
Сторона, противоположная прямому углу, называется гипотенузой .
Стороны, прилегающие к прямому углу, называются катетами.
1 СВОЙСТВО
СУММА двух острых углов прямоугольного треугольника равна 90 градусам
В самом деле, сумма углов треугольника равна 180 градусам, а прямой угол равен 90 градусам, поэтому сумма двух острых углов прямоугольного треугольника равна 90 градусов.
______________________________________________________________________________________________
______________________________________________________________________________________________
2 СВОЙСТВО
КАТЕТ прямоугольного треугольника, лежащий против угла в 30 градусов, равен половине гипотенузы.
Рассмотрим прямоугольный треугольник ABC, в котором угол А-прямой, угол В=30 градусам и, значит, угол С=60 градусам. Докажем, что АС= ½ ВС.
Приложим к треугольнику АВС равный ему треугольник АВD так, как показано на рисунке. Получим треугольник BDC, в котором угол В=D=60 градусам, поэтому DC=BC. Но АС= ½ ВС, что и требовалось доказать
______________________________________________________________________________________________
3 СВОЙСТВО
Если катет прямоугольного треугольника равен половине гипотинузы, то угол, лежащий против этого катета, равен 30°.
Достроим к треугольнику АВС равный ему треугольник ABD так, как у нас показано на рисунке. Получим равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу (т.к. сумма углов треугольника равна 180°, а в равностороннем треугольнике все углы равны, следовательно, 180° : 3= 60° – каждый угол равностороннего треугольника). В частности, ∠DВС = 60°. Но ∠DВС= 2∠АВС. Следовательно, ∠
АВС = 30°, что и требовалось доказать.
Так как в прямоугольном треугольнике угол между двумя катетами прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует:
если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
Далее из второго признака равенства треугольников следует:
если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему другого, то такие треугольники равны.
Теорема. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
Дано: ∆АВС и ∆НМХ, ∠С = ∠Х = 90°, АВ = НМ, ∠А = ∠Н.
Доказать: ∆АВС и ∆НМХ
Доказательство. Из первого свойства прямоугольных треугольников мы можем сделать вывод, что в таких треугольниках два других острых угла также равны, поэтому треугольники равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам). Теорема доказана.
Теорема. Если гипотенуза и катет одного прямоугольного треугольника
соответственно равны гипотенузе и катету другого, то
такие треугольники равны.
∆ АВС = ∆ А1В1С1
Наложим ∆ А1В1С1 на треугольник ∆ АВС.
Т.к. АС = А1С1 и АВ = А1В1, то они при наложении совпадут.
Тогда вершина А1 совместиться с вершиной А.
Но и тогда и вершины В1 и В также совместятся.
Следовательно, треугольники равны.
Доказательство.
Тест прямоугольный треугольник
1 вопрос
Верно ли, что в прямоугольном треугольникесумма катетов больше гипотенузы?
Может ли прямоугольный треугольник быть
а)равнобедренным; б) равносторонним?
Верно ли, что если в треугольнике
одна сторона вдвое больше другой, то этот
треугольник – прямоугольный с углом 30°?
Верно ли, что равенство прямоугольных треугольников
можно доказать по гипотенузе и паре соответственно
равных элементов?
2 ВОПРОС
3 ВОПРОС
4 ВОПРОС
ОТветы
- ДА
- А) ДА Б) НЕТ
- НЕТ
- ДА
задачи
Вставка рисунка SmartArt
Вставка рисунка SmartArt