Файл: Электропривод (ЭП) с трехфазным асинхронным двигателем (АД) является самым массовым видом привода в промышленности, коммунальном и сельском хозяйстве.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.11.2023
Просмотров: 9230
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
2.4Техника безопасности при эксплуатации электрических машин.
При работе электродвигателей необходимо соблюдать элементарные правила безопасности. Нельзя касаться вращающихся, движущихся частей электродвигателей, и соединенных с ними аппаратов во время их работы. Нельзя проверять руками, какое направление вращения имеет включенный электродвигатель. Нельзя совать предметы, через отверстия на кожухе крыльчатки электродвигателя. Нельзя находиться возле электродвигателя в развевающейся одежде. Одежда должна быть застегнутой. Не допускать попадания воды на работающий электродвигатель, попадания масел, и других жидкостей. Запрещается открывать крышку Брно (крышка коробки, в которой кабель соединяется с контактами ЭД) электродвигателя, во время его работы. Нельзя стоят на работающем электродвигателе.
Соединительные муфты электродвигателя и агрегата, должны быть закрыты защитным кожухом, во избежание попадания на них разных посторонних предметов, животных и людей. Рекомендуется закрывать козырьками сам электродвигатель, если производственные процессы связаны с перегоном жидкостей. Нельзя бросать различные предметы в сторону работающего электродвигателя. Запрещается разбирать, производить ремонтные работы на работающем электродвигателе. Все ремонтные работы производятся только на отключенном, обесточенном электродвигателе.
Рабочий электродвигатель должен быть заземлен, заземление ставят при монтаже электродвигателя. Не допускается последовательное соединение заземлений, то есть не должно быть заземления по такой схеме: электродвигатель - металлическая коробка управления электродвигателем - заземляющий контур. Металлическая коробка и электродвигатель соединяются отдельно с заземляющим контуром.
При работе электродвигателя нельзя его промывать водой, или другими жидкостями, нельзя прочищать щеткой, протирать ветошью. Нельзя проверять устойчивость, надежность креплений электродвигателя, пользуясь ломом, монтажкой. Нельзя выполнять какие-либо работы, стоя на самом электродвигателе. Место, где установлен электродвигатель, должен быть хорошо освещен. Не допускается нахождения возле электродвигателя посторонних людей, животных. Площадка вокруг электродвигателя должна быть чистой, не должны быть рядом воспламеняющиеся вещества, предметы, загромождающие доступ к электродвигателю. На полу не должны находиться растёкшиеся масла, другие скользкие вещества и предметы. Не допускается хранение баллонов с пропаном, с кислородом возле электродвигателей. Нельзя укрывать электродвигатель тканями, минватой. При необходимости можно прикрыть электродвигатель ширмами из негорючего материала, во избежание попадания воды и разных мелких предметов. Техника безопасности при ремонте электрических машин.
Приступая к ремонту электрических агрегатов, первым делом их обесточивают. Отключат автоматические выключатели, вывешивают запрещающие плакаты, предварительно проверив, что нет напряжения, устанавливают переносные заземления, ограничивают доступ посторонних лиц к ремонтируемому электрооборудованию, установив ограждения. Ремонтные работы выполняет только квалифицированный персонал.
Ремонтными случаями электрооборудования являются:
Сильный нагрев корпусов
Повышенный гул
Искрение во время работы.
Сильный шум в подшипниках электродвигателя.
Ослабление креплений
Сильная вибрация
Произвольная остановка электродвигателя со срабатыванием защиты
Возгорание электродвигателя. При возгорании электродвигателя, его сразу обесточивают, вызывают пожарных, приступают к тушению углекислотными огнетушителями. Нельзя пытаться тушить горящий электродвигатель не обесточив его.
При возгарании электродвигатель заменяют новым. Придерживаясь выше описанных инструкций, можно обезопасить людей от несчастных случаев и травм.
2.5 Проведение стандартных и сертифицированных испытаний электропривода с асинхронным двигателем
Испытания асинхронных электродвигателей можно разделить на две рабочие фазы: предремонтные испытания асинхронных электродвигателей и послестроительные испытания асинхронных электродвигателей.
Предремонтные испытания асинхронных электродвигателей.
Во время предремонтных испытаний асинхронных электродвигателей выявляются дефектные узлы и части машины и определяется характер и объем ремонта. Некоторые машины могут быть отремонтированы без полной замены обмоток; в этом случае ограничиваются ликвидацией мелких дефектов изоляции или выводных концов. Иногда в ремонт ошибочно поступают и справные машины. Выявление таких машин - одна из задач предремонтных испытаний электродвигателей.
Сопротивление изоляции обмоток относительно корпуса и между обмотками машины с номинальным напряжением до 500 В измеряют исключительно мегаомметром на 500 В; машины с номинальным напряжением свыше 500 В - мегаомметром на 1000 В. По окончании измерений цепи разряжают на заземленный корпус машины. Продолжительность разрядки обмоток на номинальное напряжение 3000 В и выше следующая: обмотки машины мощностью до 1000 кВт (кВ -А) - не менее 15 с; обмотки машин большей мощности - не менее 1 мин.
Соединенные фазы многофазных обмоток считают за одну цепь, если начало и конец каждой фазы не обеспечены отдельными выводами, и всю многофазную обмотку испытывают относительно корпуса машины целиком. Если имеются выводы от начала и конца каждой фазы, испытания проводят по очереди для каждой фазы при соединении других фаз с корпусом машины. Результаты испытания изоляции обмотки относительно корпуса и между обмотками считаются удовлетворительными, если во время испытания не происходит пробоя изоляции или перекрытия ее скользящими разрядами.
Послеремонтные испытания асинхронных электродвигателей
В программу контрольных испытаний асинхронных двигателей входят: м- измерение сопротивления изоляции обмоток относительно корпуса и между фазами обмоток;
- измерение омического сопротивления обмотки в холодном состоянии;
- определение коэффициента трансформации (в машинах с фазным ротором);
- испытание машины на холостом ходу;
- измерение токов холостого хода по фазам;
- измерение пусковых токов в короткозамкнутых двигателях и определение кратности пускового тока;
- испытание электрической прочности витковой изоляции;
- испытание электрической прочности изоляции относительно корпуса и между фазами; - проведение опыта короткого замыкания;
- испытание на нагрев при работе двигателя под нагрузкой.
После ремонта электродвигателя проверяют нагрев подшипников и отсутствие в них посторонних шумов. У машин мощностью выше 50 кВт при частоте вращения более 1000 об/мин и у всех машин, имеющих частоту вращения свыше 2000 об/мин, измеряют величину вибрации.
.
При Пуске асинхронного двигателя
Пусковые свойства двигателей пуске ротор двигателя, преодолевая момент нагрузки и момент инерции, разгоняется от частоты вращения п = 0 до п . Скольжение при этом меняется от sп = 1 до s. При пуске должны выполняться два основных требования: вращающий момент должен бить больше момента сопротивления (Мвр>Мс) и пусковой ток Iп должен быть по возможности небольшим.
В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др. Ниже различные способы пуска рассматриваются более подробно.
Прямой пуск.
Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на рис. 3.22. При включении рубильника в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора
, (3.37)
максимальны (см.п.3.19 при s=1). По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.
Рис. 3.22
Значение пускового момента находится из (3.23) при s = 1:
,(3.38)
Из рис. 3.18 видно, что пусковой момент близок к номинальному и значительно меньше критического. Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).
Приведенные данные показывают, что при прямом пуске в сети,
питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.
С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места. В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).
Пуск двигателей с улучшенными пусковыми свойствами.
Улучшение пусковых свойств асинхронных двигателей достигается использованием эффекта вытеснения тока в роторе за счет специальной конструкции беличьей клетки. Эффект вытеснения тока состоит в следующем: потокосцепление и индуктивное сопротивление X2 проводников в пазу ротора тем выше, чем ближе ко дну паза они расположены (рис.3.23). Также X2 прямо пропорционально частоте тока ротора.
Следовательно, при пуске двигателя, когда s=1 и f2 = f1 = 50 Гц , индуктивное сопротивление X2 = max и под влиянием этого ток вытесняется в наружный слой паза. Плотность тока j по координате h распределяется по кривой, показанной на рис.3.24. В результате ток в основном проходит по наружному сечению проводника, т.е. по значительно меньшему сечению стержня, и, следовательно, активное сопротивление обмотки ротора R2 намного больше, чем при нормальной работе. За счет этого уменьшается пусковой ток и увеличивается пусковой момент МП (см. (3.37), (3.38) ).
По мере разгона двигателя скольжение и частота тока ротора падает и к концу пуска достигает 1 – 4 Гц. При такой частоте индуктивное сопротивление мало и ток распределяется равномерно по всему сечению проводника. При сильно выраженном эффекте вытеснения тока становится возможным прямой пуск при меньших бросках тока и больших пусковых моментах.
К двигателям с улучшенными пусковыми свойствами относятся двигатели, имеющие роторы с глубоким пазом, с двойной беличьей клеткой и некоторые другие.
Рис.3.23 Рис. 3.24