Файл: Содержание Содержание 1 Список использованных источников 11 Ресинтез атф список использованных источников Ресинтез атф.rtf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 01.12.2023

Просмотров: 19

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


При возрастании интенсивности работы, когда ЧСС увеличивается до 170-190 уд/мин, "устойчивое состояние" не устанавливается, хотя потребление кислорода возрастает до достижения МПК. Максимальный уровень потребления кислорода даже у тренированных людей не может поддерживаться долго - больше 6-8 минут. Если мощность работы превысила уровень МПК, то устойчивое состояние работоспособности не устанавливается, т. е. возникает ложное "устойчивое состояние".

При такой работе потребность организма в кислороде полностью не удовлетворяется, так как уже исчерпаны возможности сердечно-сосудистой системы по его доставке к работающим мышцам или исчерпана окислительная способность дыхательных ферментов в мышечных клетках.

В условиях кислородного дефицита активизируются анаэробные системы ресинтеза АТФ. С началом интенсивной работы и в первые секунды ее выполнения, при "врабатывании" организма или при резких кратковременных увеличениях мощности работы ("спрутах"), преимущественное значение для энергообеспечения имеет фосфагенная система. Но по мере исчерпания ее энергетических резервов в работающих мышцах, начинает возрастать роль анаэробного гликолиза. Организм при этом работает как бы "в долг". Этот кислородный "долг" устраняется во время отдыха или при существенном снижении мощности работы. При этом восстановление израсходованных фосфагенов (АТФ+КрФ) происходит полностью через 305 минут, а наполовину - за 25-30 секунд отдыха. Это так называемый быстрый (алактатный) компонент кислородного долга. Та же его часть, которая отражает степень участия в работе анаэробного гликолиза и, следовательно, восстановление израсходованных субстратов - полностью устраняется лишь за 1.5-2.0 часо, а наполовину - за 15-30 минут. Это медленный (лактатный) компонент кислородного долга.

Образование молочной кислоты в мышечных клетках имеет место с началом практически любой, даже преимущественно аэробной физической работы. Однако, содержание МК в крови во время легкой работы мало отличается от уровня покоя. При увеличении мощности работы и возрастания потребления кислорода более 5-% от МПК, кривая накопления МК в крови резко поднимается. Эта граница выраженного перехода от преимущественно аэробного энергообеспечения работы к смешанному аэробно-анаэробному, когда начинают активизироваться анаэробные процессы, называется анаэробным пророгом, или порогом анаэробного обмена (ПАНО). Если рабочая нагрузка превышает уровень ПАНО, в работающих мышцах и в крови начинает интенсивно накапливаться молочная кислота, тяжесть физической работы возрастает и она рассматривается в физиологии труда и спорта как напряженная работа смешанной аэробно-анаэробной направленности. Показатели ПАНО являются критериями аэробной эффективности. Для профессиональной деятельности это имеет вполне определенное значение: чтобы нетренированных человек был способен длительное время выполнять свою профессиональную работу, в которой задействованы большие мышечные группы, он не должен превышать мощности, соответствующей примерно 50%-му уровню МПК или своего анаэробного порога. С другой стороны, люди, систематически
тренирующиеся в упражнениях на выносливость, способны не только увеличить МПК, а также минимизировать свои энерготраты за счет совершенствования техники рабочих движений. Для профессионально-прикладной подготовки путь повышения физической работоспособности через увеличение аэробной эффективности менее рискован и наиболее приемлем, так как не требует значительного увеличения рабочей ЧСС и потому доступен всем возрастным категориям людей. Именно с этим связано широкое распространение оздоровительного бега трусцой и аналогичных по физиологическому воздействию других средств физической подготовки.

Во время выполнения относительно легкой работы, когда потребление кислорода не превышает 50% от максимума (с продолжительностью до нескольких часов), большая часть энергии поставляется мышцам за счет окисления жиров. Во время более напряженной работы, когда потребление кислорода превышает 60% от максимума, значительная часть энергии поставляется уже и за счет окисления углеводов. При мощности работы, близкой к критической, подавляющую часть энергопродукции обеспечивает окисление углеводов.


Список использованных источников



  1. Биохимия физической культуры и спорта: учебно-методическое пособие (составители Г.Е. Медведева, Т.В. Соломина) - Челябинск, 2016.

  2. Казначеев В.П., Баевский P.M. В кн.: Адаптация и проблемы общей патологии. - Новосибирск, 2022, т. 2, с. 9-13.

  3. Макарова Г.Л., Локтев С.А. Картина крови и функциональное состояние организма спортсменов. Краснодар, 2020.

  4. Медведева Г.Е. Биоэнергетика мышечной деятельности: учебное пособие. - Челябинск, 2016.

  5. Соломина Т.В. Особенности процессов энергообеспечения физических нагрузок в циклических видах спорта. Учебное пособие - Омск, Челябинск, 2017.