ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.08.2024
Просмотров: 279
Скачиваний: 0
СОДЕРЖАНИЕ
Министерство образования Российской Федерации
Б.М. Балоян, а.Г. Колмаков, м.И. Алымов, а.М. Кротов
1. Наноматериалы и нанотехнологии – история, современность и перспективы
2. Понятие о наноматериалах. Основы классификации и типы структур наноматериалов.
2.2. Основы классификации наноматериалов
2.3. Основные типы структур наноматериалов
3. Особенности свойств наноматериалов и основные направления их использования
3.1. Физические причины специфики наноматериалов
3.2. Основные области применения наноматериалов и возможные ограничения
Ограничения в использовании наноматериалов
4.1. Методы порошковой металлургии
4.1.1 Методы получения нанопорошков
Методы физического осаждения из паровой фазы
4.1.2. Методы формования изделий из нанопорошков.
4.2. Методы с использованием аморфизации
4.3. Методы с использованием интенсивной пластической деформации
4.4. Методы с использованием технологий обработки поверхности
4.4.1. Технологии, основанные на физических процессах Методы физического осаждения из паровой фазы
4.4.2. Технологии, основанные на химических процессах
5. Фуллерены, фуллериты, нанотрубки
6. Квантовые точки, нанопроволоки и нановолокна
7. Основные методы исследования наноматериалов
7.2. Спектральные методы исследования.
7.3. Сканирующие зондовые методы исследования
7. Основные методы исследования наноматериалов
Рис. 7.5. Принципиальная схема действия сканирующего туннельного микроскопа: 1- зонд, 2- исследуемый образец, It – туннельный ток в зазоре величиной , EF - уровень Ферми, U - напряжение, приложенное между зондом и образцом, W – энергия, e – заряд электрона, Z - ось координат по высоте [4].
остановилась игла, а во втором случае – определять параметры зонной структуры для полупроводников и сверхпроводников[4].
Ограничениями метода сканирующей туннельной микроскопии являются обязательность электропроводности материала исследуемого образца и необходимость высокого или сверхвысокого вакуума и низких температур (до 50-100 К) для получения высоких разрешений. В то же время для разрешения в диапазоне порядка 1 нм эти требования необязательны.
Атомно-силовая микроскопия (AFM)
В этом методе регистрируют изменение силы взаимодействия кончика зонда (иглы) с исследуемой поверхностью. Игла располагается на конце консольной балочки с известной жесткостью, способной изгибаться под действием небольших сил, возникающих между поверхностью образца и вершиной острия (рис. 7.6). Эти силы в ряде вариантов метода могут быть Ван-дер-Ваальсовскими (молекулярными), электростатическими или магнитными. Балочка с иглой носит название кантилевера. Деформация
Рис. 7.6. Схемы двух мод метода атомно-силовая микроскопии: а) контактная мода, б) квазиконтактная мода [4]: 1- лазер, 2- игла, 3- система измерения прогиба или колебаний кантилевера, 4- система регистрации усилий, действующих на иглу.
кантилевера измеряется по отклонению лазерного луча, падающего на его тыльную поверхность, или с помощью пьезорезистивного эффекта, возникающего в материале кантилевера при изгибе [4].
Имеются две моды варианта метода атомно-силовая микроскопии. При контактной моде кончик иглы (алмазной, фулеритовой или кремниевой с упрочняющим покрытием) в рабочем режиме непрерывно находится в контакте с исследуемой поверхностью. При простоте реализации этой моды имеется и недостаток – возможность повреждения исследуемого материала или иглы. При «квазиконтактном» или «неконтактном» режиме проводится измерение параметров собственных колебаний кантилевера (резонансные частоты, затухания колебаний, сдвиг фаз между воздействующей силой и смещением). Игла кантилевера находится в этом случае на некотором расстоянии от поверхности образца (10-500 Å) и взаимодействует с ней посредством относительно дальнодействующих сил Ван-дер-Ваальса [4].
В ряде современных приборов существует возможность измерения усилий трения иглы, снятие карт упругости изучаемых участков материала, электрического импеданса, проведения испытаний нанотвердости методом царапанья, а при использовании полупроводниковых алмазных игл – емкость поверхности образца, проводимость приповерхностного слоя, определение концентрации примесей по величине изменения емкости.. Разрешение по плоскости (координаты x и y) составляет порядка 1 нм, а по высоте (координата z) – до 0,1 нм. Узким местом метода является стойкость материала иглы. Однако для большинства исследуемых материалов твердости алмазной или фуллеритовой иглы вполне хватает.
Магнитосиловая зондовая микроскопия (MFM)
Данный метод фактически является разновидностью предыдущего. Отличие заключается в том, что кончик иглы кантилевера выполняется из магнитного материала или игла имеет ферромагнитное покрытие. При этом кантилевер становится чувствительным к магнитной структуре образца. Разрешение этого метода пока составляет порядка 10-50 нм [4]. Использование магнитосиловой зондовой микроскопии особенно перспективно при исследованиях тонких пленок ферромагнетиков, например для целей электроники.
Сканирующая микроскопия ближней оптической зоны (SNOM)
В этом методе , иногда называемом также ближнепольной оптической микроскопией, в качестве зонда используется световой волновод (стекловолокно), сужающийся на конце, обращенном к исследуемому образцу (рис. 7.7). При этом минимальный диаметр кончика световолокна
Рис. 7.7. Принципиальная схема метода сканирующей микроскопии ближней оптической зоны: 1 – волновод, 2- фотоприемник, 3- световое поле открытого конца волновода (с диаметром меньше длины волны светового излучения) [4].
должен быть меньше длины волны светового излучения. В этих условиях световая волна не выходит из волновода на большое расстояние, а лишь слегка «выглядывает» из его кончика [4]. На другом конце волновода располагаются лазер и чувствительный фотоприемник отраженного от свободного торца волновода света. С учетом малого расстояния между исследуемой поверхностью и кончиком зонда сигналом, используемым для построения трехмерного изображения поверхности, являются амплитуда и фаза отраженной световой волны. Метод позволяет достигать разрешения до 10 нм. В ряде приборов самого последнего поколения с использованием нанотехнологий лазер и фотоприемник стали располагать на кончике иглы атомно-силового микроскопа, что позволяет объединять возможности обоих методов [4].
7. Основные методы исследования наноматериалов
Для исследования наноматериалов в принципе могут применяться практически те же методы, что и для исследования обычных кристаллических материалов. Однако у наноматериалов существует особая специфика, которая заключается в предъявлении повышенных требований к разрешающей способности методов, а именно возможность исследовать участки поверхности образцов с размерами менее 100-200 нм. Таким образом, можно выделить ряд методов структурного и химического анализа, применение которых позволяет учесть специфику наноматериалов. Ниже представлены основные из таких методов.
7.1. Электронная микроскопия.
По сравнению со световыми микроскопами использование электронного луча с малой длиной волны позволяет существенно увеличить разрешающую способность.
В настоящее время используются несколько конструкций электронных микроскопов: просвечивающие, растровые (сканирующие), эмиссионные и отражательные. Наибольшее применение при исследованиях наноматериалов нашли методы просвечивающей и растровой электронной микроскопии.
Просвечивающая электронная микроскопия.
Просвечивающая электронная микроскопия дает возможность получить в одном эксперименте изображения с высоким разрешением и микродифракционные картины одного и того же участка образца. Современные просвечивающие электронные микроскопы обеспечивают разрешение до 0,1 нм и размер участка, с которого снимается микродифракционная картина - до 50 нм. В связи с этим стали иногда употреблять термин «просвечивающая электронная микроскопия высокого разрешения» [8]. По полученному изображению можно судить о строении материала, а по дифракционной картине – о типе кристаллической решетки.
Принципиальная схема просвечивающего электронного микроскопа показана на рис. 7.1. Он состоит из электронной пушки и системы электромагнитных линз, заключенных в вертикально расположенную колонну, в которой поддерживается вакуум 10–2-10-3Па [128-130]. Осветительная система микроскопа включает электронную пушку и двухлинзовый конденсатор. Электронная пушка состоит из катода (нагретая нить изWилиLaB6), эмитирующего электроны, фокусирующих электродов (на них подается больший отрицательный потенциал) и анода в виде пластинки с отверстием. Между катодом и анодом создается мощное электрическое поле с ускоряющим напряжением (в современных микроскопах 500-3500кВ). С увеличением скорости происходит уменьшение длины волны (=h/mv, =h(2meU)-1/2) и изменение массы электрона. С уменьшением длины волны возрастает разрешающая способность оптической системы просвечивающего электронного микроскопа. Рост ускоряющего напряжения также приводит к возрастанию проникающей способности электронов. На микроскопах с напряжением 1000 и более кВ возможно изучение образцов толщиной до 5-10 мкм. Проходя через отверстие анода пучок электронов попадает в конденсоры и корректор юстировки, где происходит окончательное наведение электронного луча на изучаемый образец. После прохождения объекта электроны рассеиваются. Их фокусировка и получение первичного изображения на экране осуществляется с помощью системы линз (объективной, промежуточной и т.п.). Аппретурная диафрагма позволяет выбирать из всех электронов, прошедших через образец, либо только сильно рассеянные электроны, либо
Рис. 7.1. Принципиальная схема просвечивающего электронного микроскопа [128,129]: 1- катод, 2- фокусирующий электрод, 3- анод, 4- первый конденсор, 5- диафрагма первого конденсора, 6- второй конденсор, 7- диафрагма второго конденсора, 8- стигматор второго конденсора, 9- корректор юстировки, 10- объект исследования, 11- столик для объектов, 12- объективная линза, 13- апертурная диафрагма, 14- стигматор объективной линзы, 15- секторная диафрагма, 16- стигматор промежуточной линзы, 17- промежуточная линза, 18- диафрагма поля зрения, 19 проекционная линза, 20- экран для наблюдения.
|
нерассеянные или слаборассеянные электроны. В первом случае на полученном изображении более светлыми будут выглядеть участки, соответствующие участкам образца с большей рассеивающей способностью (темнопольное изображение), а во втором – наоборот (светлопольное изображение). Фиксация изображения на ранее выпущенных микроскопах осуществлялась на фотопленку или фотопластинки. В современных микроскопах используются цифровые фото- и кинокамеры. Для уменьшение явления астигматизма, вызванного отклонениями в симметрии магнитного поля электромагнитных линз и нарушения геометрической формы полюсных наконечников. Для микродифракционных исследований в состав микроскопа включают подвижную селекторную диафрагму, которая в этом случае заменяет аппретурную.
Существует три разновидности метода просвечивающей электронной микроскопии: прямой, полупрямой и косвенный.
Прямой метод дает наиболее полную информацию о структуре объекта, которым служит тонкая металлическая пленка (фольга) прозрачная или полупрозрачная для электронов. Обычно фольги получают путем утонения массивных образцов. На последних стадиях процесса утонения наиболее часто применяют технологию электрохимической полировки. В ряде случаев фольги получают также путем физического напыления в вакууме на водорастворимые подложки (NaCl,KCl). При исследованиях по этому методу удается различать отдельные дислокации и их скопления. Иногда микроскопы снабжают специальными приставками. Например, при использовании приставки, позволяющей растягивать фольгу в колонне микроскопа, можно непосредственно наблюдать эволюцию дислокационной структуры при деформации. При исследовании этим методом можно проводить и микродифракционный анализ. В зависимости от состава материала в зоне изучения получают диаграммы в виде точек (монокристаллы, или поликристаллы с зерном больше зоны исследования), сплошные или состоящие из отдельных рефлексов (очень мелкие кристаллики в зернах или несколько малых зерен). Расчет этих диаграмм аналогичен расчету рентгеновских дебаеграмм. С помощью микродифракционного анализа можно также определять ориентировки кристаллов и разориентировки зерен и субзерен. Просвечивающие электронные микроскопы с очень узким лучом позволяют по спектру энергетических потерь электронов прошедших через изучаемый объект, проводить локальный химический анализ материала., в том числе анализ на легкие элементы (бор, углерод, кислород, азот).